
1 January 1997 Delphi Informant

Cover Art By: Tom McKeith

January 1997, Volume 3, Number 1

A New Spin on Delphi
Delphi Graphics Programming

ON THE COVER
7 A New Spin on Delphi — Peter Dove and Don Peer
Misters Dove and Peer begin a series on graphics programming by
developing the TGMP component. The series will follow it from inception,
through development, to a fully-functional 3D rendering component.

FEATURES
14 Informant Spotlight — Danny Thorpe
A member of the Delphi R&D team, Mr Thorpe begins a two-part series
that explores virtual methods and polymorphism.

19 DBNavigator — Cary Jensen, Ph.D.
INI files or the Windows 95 registry? Dr Jensen offers an overview
of how to use either — or both.

25 OP Tech — Ray Lischner
Undocumented — until now; Mr Lischner shares some of the internal
messages of the Delphi VCL.

34 In Development — Mark Ostroff
Object names getting unwieldy? Mr Ostroff shares a set of Delphi
naming conventions that can make your programming life easier.

38 Delphi at Work — David Faulkner
Offering his TBarCode component, Mr Faulkner demonstrates creating
Code 39 bar codes.

42 Case Study — Don Bauer
How good is Mr Bauer’s TWorldMap component? NASA found it useful.

REVIEWS
45 InfoPower 2.0 — Product Review by Bill Todd
49 SysTools for Delphi — Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Symposium by Jerry Coffey
3 Delphi Tools
6 Newsline
55 File | New by Richard Wagner

2

A
N
w
t
z

I
m

—

fter Anders

Symposium

o — you didn’t miss anything; there just wasn’t a December issue of Delphi Informant. And there
as no gap in your monthly Delphi coverage; it was strictly a logistical move to help DI get wider dis-

ribution and appear sooner each month on newsstands. So relax; with any luck, we’ll get this maga-
ine thing down soon.

 will be leaving Borland by the end of [October 1996] to take a job at Microsoft. This has not been an easy decision to
ake, but I have now been with Borland for 13 years, and I feel that it is time for me to try some new challenges.

 Anders Hejlsberg, Delphi co-architect (from CompuServe forum, BDelphi32)
On to the main topic: As you’ve proba-
bly heard by now (this is written on
October 21st, 1996), Anders Hejlsberg
has left for Microsoft. Hejlsberg has
been with Borland since its inception.
He created the now-legendary Turbo
Pascal product that revolutionized the
desktop computer industry with the first
integrated development environment.

News of Anders’ departure hit me like a
thunderbolt. On the several occasions
I’ve met Anders or heard him speak, I
was invariably struck by his affability
and — well — brilliance. It was com-
forting that my all-time-favorite devel-
opment environment was in his skillful
hands. What now would happen to the
Delphi R&D team? Would others fol-
low Anders to Microsoft? Would they
just scatter to the four winds?

From all accounts, Hejlsberg had per-
sonal reasons for moving on; he’s not so
much “leaving Borland” as beginning a
new endeavor. According to Zack
Urlocker, Director of Product
Management for Borland and a member
of the Delphi R&D team: “We’re cer-
tainly sad to see Anders leave, but it was
a personal decision on his front. After
being here 13 years — since college —
he’s decided to try something different.
The rest of the team is here to stay.”

The most important thing to readers
of this magazine, however, is the health
of Delphi without Hejlsberg.
Fortunately, the view of the product
being in the hands of one man is
naive. Again, from Anders: “For those
January 1997 Delphi Informant
of you worried about Delphi’s future, I
want to assure you that the product is
in the hands of an incredibly compe-
tent team of people for whom I harbor
the deepest respect. Back in the old
Turbo Pascal days it was possible for
one person to write and maintain an
entire product. This is no longer the
case. Delphi was built by a team, and I
have full confidence in the team’s abili-
ty to develop and deliver new versions
of Delphi. In fact, the Delphi team at
this point is almost twice the size it
was when we shipped 1.0 in early ’95.
And Delphi97 is going to be a great
product [with] multi-tier database
access and COM/ActiveX support.”

Urlocker is also encouraging: “The
architectural work that Anders covers is
complete for Delphi97 and we’re in
beta. Anders’ departure won’t affect the
ship date or features going forward.
Chuck Jazdzewski will move up from
co-architect to chief architect. Chuck’s
been here longer than I have and
worked closely with Anders for eight
years. In fact, he designed the VCL and
the UI builder that’s such a powerful
aspect of Delphi. He’s also played an
important role on Latté and our
upcoming C++ product. So again, even
though we’ll miss Anders, I think the
Delphi team is in very good shape to
ship a very impressive release. There is a
whole crew of folks working on
Delphi97 many of whom have been
involved since the very beginning of the
project and have a strong vision for
where we are taking it in this next
release and beyond.”
As you know by now from its debut
at Comdex, Borland has given the
“Delphi treatment” to C++. This
one’s been kept under tight wraps and
doesn’t have a shipping name as of
this writing. It masquerades under
various names such as Ebony and
Pronto, but what’s important is what
the product represents to the industry
and to Borland.

Delphi boosted academia-bound
Pascal into the stratosphere. Given
the preponderance of C++ in the pro-
gramming world — as Urlocker says
“some folks think more naturally in
C++” — Ebony could make Delphi
look like a moderate success. Things
look bad for Borland right now, but I
can remember a darker period. In the
winter of 1994-95, Borland was rely-
ing on the flagging sales of Paradox
and dBASE, and had pinned all hopes
on a Pascal-based product no one had
heard of.

Delphi Informant wishes you well
Anders; you’ve given us an incredible
tool. Gotta run though — I have this
Delphi project I’m working on ...

Jerry Coffey, Editor-in-Chief

Internet: jcoffey@informant.com
CompuServe: 70304,3633
Fax: (916) 686-8497
Snail: 10519 E. Stockton Blvd.,
Ste. 100, Elk Grove, CA 95624

3 January 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2 Developer’s Guide,

2nd Edition

Xavier Pacheco & Steve Teixeira
SAMS Publishing

ISBN: 0-672-30914-9
Price: US$59.99
(1,322 pages, CD-ROM)
Phone: (800) 428-5331
Eagle Research Announces Version 2.0 of VB2D Translator

Eagle Research Inc. of San

Francisco, CA has released
version 2.0 of its Visual Basic
(VB) to Delphi translator.
VB2D 2.0 translates applica-
tions created in VB 3.0 or
4.0 to 32-bit Delphi 2.

VB2D 2.0 also features
online reporting, conversion
of most database code,
automatic replacement of
common VBXes, and better
code output.

According to Eagle
Research, Delphi’s new
variant, string, and curren-
cy data types make it easier
to create Delphi code from
VB applications.

For VB projects that use
Access or other databases
via the JET Database
Engine, VB2D replaces
standard VB data-aware
controls with Eagle’s JETset
controls for Delphi.

JETset controls are
derived from standard
Delphi data-aware controls,
but instead of connecting
to the BDE, they connect
directly to Microsoft’s JET
Database Engine.

VB2D is offered in stan-
dard and professional edi-
tions. The Professional
Edition includes a copy of
Eagle’s JETset product,
additional reporting capa-
bilities (such as side-by-side
listing of VB and Delphi
code), and source code.
Price: Standard Edition, US$150;
and Professional Edition, US$450.
Both versions include a 30-day
money-back guarantee.
Contact: Eagle Research Inc.,
360 Ritch St., Ste. 300,
San Francisco, CA 94107
Phone: (415) 495-3136
Fax: (415) 495-3638
E-Mail: sales@xeaglex.com
Web Site: http://www.xeaglex.com
ExceleTel Releases TeleTools-Delphi 1.04

ExceleTel Inc. of Raleigh,

NC has released TeleTools-
Delphi 1.04. TeleTools-
Delphi is a set of VCL mod-
ules that provides native
access to telephony functions
for Delphi’s IDE.

Using a component to
access Windows telephony
(TAPI) functions, TeleTools
enables developers to add
caller ID, dialing, call log-
ging, and screen pops. After
the TAPI component is
placed on a form, a develop-
er can access 22 properties,
9 events, 18 methods, and
additional TAPI functions.

Future releases of ExceleTel
products include TeleTools-
OCX, as well as the second
series of TeleTools products:
TeleTools2-Delphi and
TeleTools2-OCX. The
TeleTools2 series will add
.WAV functionality with
access to telephony record and
playback features.

Price: TeleTools-Delphi, US$99.
Contact: ZAC Catalog, 1090 Kapp
Drive, Clearwater, FL 34625
Phone: (800) 463-3574 or
(813) 298-1181
Fax: (813) 461-5808
E-Mail: sales@zaccatalog.com
Web Site: http://www.zaccatalog.com

Contact: ExceleTel Inc.,
5142 Simmons Branch Trail, Ste. 100,
Raleigh, NC 27606
Phone: (919) 233-2232
Fax: (919) 233-2230
E-Mail: sales@exceletel.com

4 January 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Programming Delphi Custom

Components

Fred Bulback
M&T Books

ISBN: 1-55851-457-0
Price: US$39.95
(420 pages, CD-ROM)
Phone: (212) 886-1068
Tamarack Associates Releases Rubicon for Delphi

Tamarack Associates of

Palo Alto, CA has released
Rubicon for Delphi, a data-
base search engine.

The Rubicon technology
allows the end-user of an
application to perform
searches using wildcards;
apply AND, OR, and NOT
logic to the search; and nar-
row the search without
regard to the underlying
database or field structure.

Rubicon encapsulates this
search technology in a set of
three native Delphi VCL
components that build
indexes, update indexes, and
execute searches, respectively.

Rubicon performs all
searches at keyed index-like
speeds by building a single
Rubicon table that indexes all
the words in the source
table(s) and their locations
(most Rubicon searches never
read the source table[s]).

Reads and writes against this
table are minimized by built-
in compression technology.
Rubicon reduces the com-
plexity associated with search-
ing normalized tables and
tables containing BLOB data.
All components are compati-
ble with Delphi 1 and 2.
Trial versions of Rubicon are

available from Tamarack’s Web
site, as well as the Delphi and
BDelphi CompuServe forums
(filenames: RUBICON.ZIP
and RBCNDEMO.ZIP).
Price: US$99, includes free updates
and support via e-mail. Rubicon may
also be ordered through CompuServe
shareware registration ID 11536.
Contact: Tamarack Associates,
868 Lincoln Ave., Palo Alto, CA 94301
Phone: (415) 322-2827
Fax: (415) 322-2827
E-Mail: 72365.46@compuserve.com
Web Site: http://www.tamaracka.com
IntegrationWare Ships Speed Daemon for Delphi v1.1

IntegrationWare, Inc. of

Deerfield, IL has released
Speed Daemon for Delphi
v1.1, a source code profiler.
It provides an analysis engine
for optimization and perfor-
mance tuning.

Using Speed Daemon, devel-
opers can monitor the effi-
ciency of key sections of code.
Given any Delphi 1 or 2 pro-
ject, the utility produces statis-
tics for each function. These
include the number of times a
function is called, the total
time spent executing the func-
tion relative to other pieces,
and average time per call.
Speed Daemon’s output can
be printed or viewed onscreen.

Speed Daemon doesn’t
require any changes to a
project or source code. It
parses the source code and
adds any required constructs
to generate function tim-
ings. This modified version
can then be recompiled. The
entire process is guided by a
wizard-like interface.

Speed Daemon works
with DLLs and OLE
automation servers devel-
oped in Delphi, and can be
used on single-threaded and
multi-threaded applications.
Price: US$59
Contact: IntegrationWare, Inc.,
Deerfield Tech Center, 111 Deer Lake
Road, Ste. 109, Deerfield, IL 60015
Phone: (888) 773-1133 or
(847) 940-1133
Fax: (847) 940-1132
Web Site: http://www.integra-
tionware.com

5 January 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
SkyLine Debuts ImageLib Corporate Suite Document Imaging Package

SkyLine Tools of North

Hollywood, CA debuted
ImageLib Corporate Suite
Version 1.0. This version of
the ImageLib software
includes the features of
ImageLib’s Combo Package
and ImageLib@the edge,
image manipulation, and
correction package.

The ImageLib Corporate
Suite package incorporates
all the formats of the
ImageLib Combo (.PCX,
.PNG, .TIF [baseline],
.JPG, .BMP, .WMF, et al.)
plus ISIS and TWAIN scan-
ning support, multimedia
formats, a video frame grab-
ber, thumbnails, and BLOB
support.

Also included are point-
and-click image correction
effects such as brightening,
contrast, gamma correction,
color reduction, and rota-
tion package.

The ImageLib Corporate
Suite features special effects
such as mosaic, page curl,
wave, and transition effects.
To these features, the suite
adds multipage scanning,
low-level scanning, as well
as enabling users to read
and write the following
TIFF formats: TIFF III,
CITT; TIFF IV, CITT;
Multipage TIFF; Packbits;
and LZW. Other formats
included are Photo-CD
(Kodak), .IMG, in addition
to .PCX and .EPS (read
only).
Skyline Tools is planning to
release a new Web kit that will
contain a progressive display
for .GIF, .PNG, and .JPG, as
well as animated .GIFs.

Price: US$499
Contact: SkyLine Tools,
11956 Riverside Dr., Ste. 107,
North Hollywood, CA 91607
Phone: (818) 766-4561
Fax: (818) 766-9027
E-Mail: 72130.353@compuserve.com
Web Site: http://imagelib.com
Hurricane Software Announces Multi-File Search Utility

In Blue Springs, MO,

Hurricane Software, Inc.

is shipping WinGREP, a
multi-file search utility
that allows programmers
to locate text strings in
source code files.
WinGREP features a col-
lapsible tree of search
results that expands to
reveal the matches for a
filename.

WinGREP also includes
a Quick-Preview window.
As results are highlighted
in the tree, the Quick-
Preview window shows
several lines of text
around the search match.

WinGREP can automat-
ically synchronize an edi-
tor or IDE with the
results of a search. It will
open the file and position
to the line of the match.
Other features include
Windows 95 long file-
name support, the ability
to save, load, and print
search result sets, a button
bar to help create regular
expressions, UNIX text
file support, online Help,
and install/uninstall.

WinGREP also ships with
the Hurricane Editor, a
multi-file text editor that
features word wrapping,
and search and replace.

Price: US$39
Contact: Hurricane Software, Inc.,
2401 SE 7th St.,
Blue Springs, MO 64014
Phone: (816) 373-9252
E-Mail: mail@hurricanesoft.com
or 102470.2564@compuserve.com
Web Site: http://www.hurricanesoft.com

6 January 1997 Delphi Informant

News
L I N E

January 1997

L e a r n i n g Tr e e
I n t e r n a t i o n a l O f f e r s

D e l p h i C o u r s e s
Learning Tree International is

hosting two Delphi courses in
January. The first, Object

Oriented Analysis and Design,
will be held January 6-10

at the Learning Tree Education
Center in Washington, D.C.

Delphi Application
Development, scheduled for

January 21-24, will be held at
the Learning Tree Education
Center in Los Angeles, CA.

For more information, contact
Learning Tree International at

(310) 417-9700 or
http://www.learningtree.com.
Borland Cuts Staff; Expects Second Quarter Loss

Scotts Valley, CA —

Borland has reduced its cor-
porate headcount by approx-
imately 15 percent or 125
individuals, as part of its
new worldwide restructuring
and realigning program.
Paul Emery, vice president

and chief financial officer, said
Borland’s cost reduction mea-
sures are expected to produce
annual savings from US$15
million to US$17 million.

In addition, Borland
announced it expects to
report a loss of US$.32 to
US$.36 per share on revenues
of approximately US$36 mil-
lion for the quarter ending
Sept. 30, 1996.

According to Borland, the
quarter’s losses were due to
slower than expected transi-
tion of its sales, marketing,
and development efforts in
moving from desktop markets
into departmental and corpo-
rate technologies.
Elk Grove, CA —

Informant Communications
Group, Inc. (ICG) has relo-
cated its corporate headquar-
ters to 10519 E. Stockton
Blvd., Ste. 100, Elk Grove,
CA, 95624-9703, effective
December 1, 1996. The
ICG telephone number
remains (916) 686-6610 and
the company’s fax number
remains (916) 686-8497.

In addition, ICG has
announced it will discontinue
its CompuServe Forum (GO
ICGFORUM) beginning
January 1, 1997. The compa-
ny will place all of its cus-
tomer support services and
efforts into its Web site at
http://www.informant.com.
The ICG Web site contains

code listings and applications
referenced in all Informant
publications, and will also
contain subscription support
and threaded discussion areas.

ICG Relocates,
Discontinues
CompuServe Forum
Borland Announces Interim President and CEO

Scotts Valley, CA — Borland

has named Whitney G. Lynn
acting President and Chief
Executive Officer. Lynn suc-
ceeds William F. Miller, who
returns to his role as
Chairman of the Board.
Miller had been the acting
CEO of Borland since the res-
ignation of Gary Wetsel.

Borland is continuing to
search for a permanent
CEO, and Lynn will serve
until a new CEO is named.
Lynn is a technology indus-
try veteran with a broad
range of executive and
management experience.
Most recently, Lynn has
served as a consultant in
the integration process sur-
rounding Borland’s pending
acquisition of Open
Environment Corp.

Additionally, Borland
announced replacements for
Paul Gross, departing Senior
Vice President of Research
and Development. Heading
enterprise development is
Jothy Rosenberg, a Borland
development vice president.
Jeff Rudy, also a Borland
development vice president,
leads the Scotts Valley research
and development efforts.
Borland Ships Java-Enabled InterBase SQL
Database Server

Scotts Valley, CA — Borland

has released InterClient for
the InterBase cross-platform
SQL database server.
InterClient, written in Java,
provides JDBC-compliant
connectivity for InterBase.

Built on JavaSoft’s Java
Enterprise-API set and its
JDBC protocols, InterClient
streamlines distributed trans-
action processing at both the
Java client and database serv-
er. It eliminates installation
and maintenance for compa-
nies committed to Web-cen-
tric technologies for informa-
tion distribution and appli-
cation development.
InterClient also targets Web-
oriented VARs and consul-
tants creating Web sites and
applications.

InterClient is one compo-
nent of Borland’s Internet
and Intranet initiatives. Their
RAD environment for Java,
code-named Latté, will help
developers extend the value
of InterClient with its Java
object component model.

For more information, visit
Borland’s Web site at
http://www.borland.com.
ICG Announces Delphi Informant and
Oracle Informant on CD-ROM
Elk Grove, CA —
Informant Communications
Group, Inc. (ICG) has
announced the release of
Delphi Informant and Oracle
Informant magazines on
CD-ROM. Both titles will
offer duplicate versions of all
articles as they appeared in
print during 1996, with
simplified keyword access
through a word index.

Each CD includes the code,
supporting files, screen shots,
and graphics for the stories
listed. Readers can print any
page within the CD.

A 16-page color booklet
ships with each title. It fea-
tures installation instruc-
tions, contents, and addi-
tional information.

Orders for Delphi
Informant Works: 1996 and
Oracle Informant Works:
1996 may be placed with
ICG by calling (800) 88-
INFORM (in the US), or
(916) 686-6610; or by fax-
ing (916) 686-8497.

Each title is available for
US$49.95, plus US$5 ship-
ping and handling (US$15
for international customers).
Errors & Omissions
Reference to downloadable code
accompanying Dan Miser’s article,
“The INISource Component,” was
inadvertently omitted from the
October issue of Delphi Informant.
This code is available for download
from the Informant Web site at
http://www.informant.com, file
name DI9610DM.ZIP.

We apologize for any inconvenience
this omission may have caused.

7 January 1997 Delphi Informant

On the Cover
Object Pascal / Delphi 2

By Peter Dove and Don Peer

A New Spin on Delphi
Delphi Graphics Programming: Part I

Figure 1: The te

unit Unit1;

interface

uses
Windows, Mess
Controls, For

type
TGMP = class(
private

{ Private d
protected

{ Protected
public

{ Public de
published

{ Published
end;

procedure Regis

implementation

procedure Regis
begin

RegisterCompo
end;

end.
Delphi is rapidly gaining respect as a games and graphics programming
language. It offers a graphical interface, rapid application develop-

ment (RAD), and the use of components at design time. More importantly,
Delphi offers true compiler technology — speed.
This article begins a series about Delphi
graphics programming. In this series, we’ll
develop a component, TGMP, following it
from inception, through development, to a
fully-functional 3D rendering component.
Our journey will take us through some basic
topics such as properties, events, and proper-
ty editors. Eventually we’ll visit more exotic
and advanced topics, such as device-indepen-
mplate unit created by Delphi.

ages, SysUtils, Classes, Graphics,
ms, Dialogs;

TComponent)

eclarations }

 declarations }

clarations }

 declarations }

ter;

ter;

nents('Graphics', [TGMP]);
dent bitmaps, sprites, palettes, optimization,
pointers, memory management, inline assem-
bler, and reading polygon data files.

If you are a C or C++ programmer, you’ll find
that writing this kind of component illus-
trates how to get Delphi to do all those things
you may have taken for granted. Regardless,
this discussion will bring you closer to discov-
ering what makes Delphi such a great prod-
uct for games and graphics development.

To summarize what we’ll create throughout
this series, a brief description of the TGMP
rendering engine is in order. TGMP will enable
you to create 3D worlds based on polygonal
data, allowing users to move through and
observe the world from all positions and
angles. (The game Doom is an example of a
rendering engine.) The TGMP engine will
also include shading based on light source
positions, clipping, collision detection, texture
mapping, and Gourard shading.

Now let’s set our minds into 3D mode and
dive into the project.

Let the Games Begin
Begin by selecting File | Close All from
Delphi’s main menu. This will ensure that all
items currently open are closed. Next, select
Component | New. In the Component
Expert, enter TGMP for the Class Name,
TComponent for the Ancestor type, and

On the Cover

Figure 2: The cube rendered in wireframe.

Figure 3: Overriding the Create constructor.

{ Place this code in the public section }
constructor Create(AOwner : TComponent) ; override;

{ Place this code in the implementation section }
constructor TGMP.Create(AOwner : TComponent);

begin
{ We must call the inherited Create of the TComponent

from which we derived this class }
inherited Create(AOwner);

{ Create the bitmap canvas }
FBackBuffer := TBitmap.Create;

{ Get a pointer to the Form's canvas }
FFrontBuffer := TForm(AOwner).Canvas;

{ Get the height and width of the window }
ViewHeight := TForm(AOwner).Height;
ViewWidth := TForm(AOwner).Width;

{ Set the bitmap's height }
FBackBuffer.Height := ViewHeight;
FBackBuffer.Width := ViewWidth;

{ Set up viewport }
HalfScreenHeight := ViewHeight div 2;
HalfScreenWidth := ViewWidth div 2;

{ Get the handle of the window }
FWindowHandle := TForm(AOwner).Handle;

{ Set the viewing distance }
ViewingDistance := 200;

{ Set the Z distance }
Z_Distance := -50;

end;
Graphics for the Palette Page. (Because we want TGMP to
be a non-visible component you can drop onto a form, it’s
derived from the TComponent class.)

After you have entered these values, select OK, and Delphi
will create a template unit (see Figure 1). This is the template
unit from which TGMP will evolve.

Let’s start with something simple. We’ll create TGMP to be a
component capable of generating a wireframe cube and pyra-
mid. Figure 2 shows how the cube will appear rendered in wire-
frame. The background color is black and is therefore the color
of the canvas on which we are drawing. (Black is the usual
choice for background color, although you can select any color.)

The main routines that must be developed for our wireframe
rendering component are line-drawing and screen-clearing
routines, 3D to 2D projection routines, and rotational calcu-
lations. The Graphic Design Interface (GDI) functions
encapsulated within TCanvas make line-drawing and screen-
clearing routines easy to write. (3D to 2D projection routines
and rotational calculations are covered later in this article.)
We’ll begin by adding some data members to the component.
At this point we need:
1) something to draw on and something to hold the back-

ground color;
2) variables to hold our viewing distance and variables for

the screen height and width; and
3) a means to keep the handle of the window that receives

the TGMP component.

Instead of using a device context, we’ll use TBitmap as the
backbuffer, because it will be compatible with the current
color depth and it encapsulates the idea of a device context.
This means we can set the height and the width of the
bitmap, and leave TBitmap to deal with any necessary
resource allocation. TBitmap also has a Canvas property, so
copying between the bitmap canvas and form canvas will be
easy. This backbuffer also allows us to draw on a hidden sur-
face, which is then copied to the screen all at once, creating a
smoother animation effect. To do this, place the following
code in the private section of the TGMP component:
8 January 1997 Delphi Informant
FBackBuffer: TBitmap;
FFrontBuffer: TCanvas;
ViewWidth, ViewHeight: Integer;
FWindowHandle: THandle;
HalfScreenWidth, HalfScreenHeight,

ViewingDistance: Integer;

By placing this code in the private section, we can restrict
access to data members through well-defined methods.
(Think of the private section as the innards of a microwave.
You wouldn’t go fiddling with those innards unless you were
a qualified microwave engineer. Access to the microwave is
through a simple pushbutton user interface, equating to the
public and published methods.)

Next we need to initialize the declared data members. To do
this, we’ll override the Create constructor as shown in Figure 3.
The constructor is called to create the object. The Create
method contains the code that allocates the memory and gov-
erns the look of the component. The override keyword indi-
cates that we want to add to the inherited Create constructor.
Note that Delphi allows you to cast AOwner as another object
(TForm), an example of Delphi’s polymorphism.

Note also that the parameter AOwner is in the Create construc-
tor. AOwner is the owner of the component, the object respon-

On the Cover
sible for freeing the component before it frees itself. The owner
will be the form on which the component is placed. This actu-
ally turns out to be quite useful because we can get the win-
dows size and other information using Windows API calls,
sending the window handle as a parameter.

We also want to destroy the TBitmap object, and release the
device context when the object comes to the end of its scope.
Thus, we need to override the destructor Destroy:

{ Place this in the public section of TGMP }
destructor Destroy; override;

{ Place this in the implementation section }
destructor TGMP.Destroy;
begin
{ Free the TBitmap }

FBackBuffer.Free;
inherited Destroy;

end;

Creating Properties
TGMP is now initializing and de-initializing correctly. Next,
we should check if there are any variables that we want users
to be able to set visually. Initially, two variables in TGMP fall
into this category: BackColor and ZDistance. BackColor sets
the background color and ZDistance sets the viewing distance
from the screen to the object.

This article assumes the reader is familiar with Delphi prop-
erties. However, some discussion of basic implementation
theory is appropriate. To do this, place the following code in
the private section of the TGMP code:

FColor : TColor;
FDistance : Integer;

Then place the following code into the published section of
the TGMP code:

property BackColor : TColor read FColor write FColor;
property ZDistance : Integer read FDistance

write SetDistance default -50;

A property definition starts with the keyword property fol-
lowed by the name of the property. This is followed by a
colon, the type of the property, and the read/write keyword.
The read keyword tells Delphi from where it should read the
value for BackColor, and the write keyword tells Delphi how
and where it should record the value a user may enter. The
name of a method, rather than a variable, can follow the read
and write keywords. This will allow some testing or screening
of the data entered by the user.

The ZDistance property varies slightly in declaration from
the BackColor property. ZDistance has read and write
statements, but the write keyword uses a procedure,
SetDistance, to save the value for the property. ZDistance
also uses the keyword default with a value of minus 50.
This is a bit of a misnomer — it doesn’t really establish a
default value for the property, but rather determines if the
value is stored in the form file. If the default value is the
9 January 1997 Delphi Informant
same as the value in the form file, the value in the form
file isn’t altered.

Declaring a default value doesn’t mean the value will be auto-
matically assigned to the property; rather, you should provide an
initial value for the property in the class’ constructor. We will
take this route with the ZDistance property to ensure that the
default distance is at least minus 50. If this was not the case and
the default value was zero, the user would be unable to see the
object. The component would then behave as if users were view-
ing the program with their noses against the screen. The follow-
ing code sets the property value and performs the initialization:

{ Set the FDistance variable }
procedure TGMP.SetDistance(Distance : Integer);
begin

FDistance := Distance;
end;

{ Initializing the ZDistance variable }
constructor TGMP.Create(AOwner : TComponent);
begin

...

{ Set the Z distance }
ZDistance := -50;

end;

Basic 3D Procedures
All our variables are created and initialized, but they are of
little use until we create some methods to do the 3D work
for our component. Here are the methods we’ll use:

{ Place in the private section }
procedure DrawLine3D(x1,y1,z1, x2,y2,z2 : Single);
procedure DrawLine2D(x1, y1, x2,y2 : Integer);
procedure SetDistance(Distance : Integer);

{ Place in the public section of TGMP }
procedure ClearBackPage;
procedure RenderNow(var Object3D : TObject3D);
procedure FlipBackPage;
procedure Rotate(x,y,z, angle);
procedure ChangeObjectColor(var Object3D : TObject3D;

Color : TColor);

Most of the methods are self-explanatory; however some require
a little explanation. FlipBackPage copies the picture you were
rendering in memory (on our temporary bitmap) and paints it
on the form that holds the component. Use the DrawLine3D
method to pass it the 3D coordinates of your line; it works out
what that should resemble on a 2D screen, which is then drawn
using the DrawLine2D method. The last method in the public
section has a type that we have not yet addressed. The
TObject3D is going to be our object structure. Its declaration is:

TPoint3D = record
x,y,z : Single;

end;

TLine3D = record
Start, End : TPoint3D;

end;

TObject3D = record
LineStore : array [0..100] of TLine3D;
NumberLine : Integer;
Color : Tcolor;

end;

On the Cover
Some 3D Theory
Currently, the object structure is simplistic. This will
change radically over the next few articles. First, however,
let’s go over a few 3D math theories.

The first mathematical concept we’ll cover is rotation of a
point in 3D space. In this component, all rotations are per-
formed around the point 0,0,0. This means that if you
wanted to rotate a sphere on that point, the center of the
sphere must be at 0,0,0. If not, the sphere would orbit
around the point 0,0,0. Sometimes this is the desired effect.

For now, however, the object is defined and rotated about
its local coordinate system. Be aware that more than one
coordinate system exists:

Local Coordinate System refers to the coordinates of the
objects’ vertices themselves.
World Coordinate System refers to the position of the
objects’ vertices in a virtual world.
Camera Coordinate System is the final position of the
objects’ vertices after being transformed through the
camera matrix. This transformation positions all the
objects as they would be if they were seen through a
camera at a given position and angle of rotation.

These coordinate systems will be covered in greater detail in
future articles.

Here are the formulas for rotation of an object through the X,
Y, and Z axis:

Rotation around Z:

NewX := X * Cos(Angle) - y * Sin(Angle)
NewY := X * Sin(Angle) + y * Cos(Angle)

Rotation around X:

NewY := Y * Cos(Angle) - Z * Sin(Angle)
NewZ := Y * Sin(Angle) + Z * Cos(Angle)

Rotation around Y:

NewZ := Z * Cos(Angle) - X * Sin(Angle)
NewX := X * Cos(Angle) + Z * Sin(Angle)

Next we need to know how to convert a 3D line onto a 2D
screen. This is a simple problem to solve. Simply divide X
and Y by the Z value. However, doing this leads to a
“zoomed” perspective, so we need to add the idea of
viewing distance. You get the extreme zoomed effect
because the algorithm assumes your nose is pressed against
the screen.

Try holding an object close to your face and you’ll see the
zooming effect. By increasing the viewing distance, you
reduce the zoom.

The following code converts from 3D to 2D with respect to
viewing distance:
10 January 1997 Delphi Informant
procedure TGMP.DrawLine3D(x1,y1,z1, x2,y2,z2 : Single);
var
ScreenX1, ScreenX2, ScreenY1, ScreenY2 : Integer;

begin
ScreenX1 :=

HalfScreenWidth + Round(X1 * ViewingDistance / Z1);
ScreenY1 :=

Round(HalfScreenHeight - Y1 * ViewingDistance / Z1);
ScreenX2 :=

HalfScreenWidth + round(X2 * ViewingDistance / Z2);
ScreenY2 :=

Round(HalfScreenHeight - Y2 * ViewingDistance / Z2);
DrawLine2D(ScreenX1, ScreenY1, ScreenX2, ScreenY2);

end;

You’ll also notice we have two constants: HalfScreenHeight
and HalfScreenWidth. Because we want objects to appear at
the center of the screen, we need to add half the screen height
to the Y value and half the screen width to the X value.

Finally, we’ll create a variable of type TObject3D, fill it with
3D data, assign it a color, and we’re ready to go. Listing One,
beginning on page 11, shows the code for the TGMP unit,
with some added data members. These members are filled in
the Create constructor to determine the size of the window to
render to. After this code has been added to the initial unit
template, save the unit as GMP.PAS.

You are now ready to install the component into Delphi’s
component library. To do this, select Component | Install to
display the Install Components dialog box. Select the
GMP.PAS file, add it to the component list, and select OK to
recompile. Delphi will return the Component Palette with a
new Graphics page containing the TGMP component.

Our First Application
Now that you have installed the component, we can put it to
work and create our wireframe application.

In our first application, we’ve created two arrays that hold the
data for the cube and pyramid objects. This is to set the founda-
tion for reading polygon data files to create the 3D objects. The
arrays are declared in the type section of the application code:

TPyramidArray = array [0..47] of Integer;
TCubeArray = array [0..71] of Integer;

In the public section of the source code for the wireframe
application, notice the two variables of type TObject3D and a
pointer to TObject3D, CurrentObject. We are using
CurrentObject to keep track of the object the user selected.
When the user selects a new object, we assign the current
object pointer to the object selected.

You’ll notice in the Timer1.Timer procedure that we use the
pointer in the following format: CurrentObject^. By plac-
ing the carat after the pointer CurrentObject, we are referring
to the object rather than its address. This enables us to have
a generic place holder. Otherwise, we would need to test
which object is selected, and have two sets of the code you
see in the Timer1.Timer procedure (one set of code for each
object we create). Typically, you would have to use a case

Figure 4: The type of graphic your TGMP rendering engine will
be capable of generating by the fourth article of this series.

On the Cover

Peter Dove is a Technical Associate with Link Associates Limited and a partner in
Graphical Magick Productions. He can be reached via the Internet at
peterd@graphicalmagick.com.

Don Peer is a Technical Associate for Greenway Group Holdings Inc. (GGHI) and a
partner in Graphical Magick Productions. He can be reached via the Internet at
dpeer@graphicalmagick.com.
statement to accomplish this, but as you can see, pointers
can be an eloquent solution to long-winded programming.

Listing Two on page 13 shows the first program that demon-
strates the use of TGMP. The application loads a TObject3D
variable and animates the object in wireframe mode.

Conclusion
Our initial development of the TGMP rendering component
provides a solid foundation on which to add additional 3D
math and rendering procedures. To give you an indication of
where we’re headed with this series, Figure 4 shows the type
of graphic your TGMP rendering engine will be capable of
generating later in this series.

We’ll also be covering the issue of code optimization in some
depth later in this series. In fact, some of those optimizations
will include code that has been presented this month. It
might be a good mental exercise to look over the example
program and determine where you would optimize this code.

Although our first application is basic, the component has been
initialized in such a manner that future articles can build upon
it rather than re-design it from the ground up with each new
rendering process. This will become apparent in our next article
as we add solid matter to the wireframe objects created here. ∆

References:
LaMothe, A., Black Art of 3D Game Programming
[Waite Group Press, 1995].
Lampton, Christopher, Flights of Fantasy
[Waite Group Press, 1993].
Lyons, Eric R., Black Art of Windows Game Programming
[Waite Group Press, 1995].
11 January 1997 Delphi Informant
The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JAN\DI9701DP.
Begin Listing One — The GMP Unit
unit gmp;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TPoint3D = record

x,y,z : single;
end;

TLine3D = record
StartPoint, EndPoint : TPoint3D;

end;

TObject3D = record
LineStore : array [0..100] of TLine3D;
NumberLine : Integer;
Color : Tcolor;

end;

TPObject3D = ^TObject3D;

TGMP = class(TComponent)
private

{ Private declarations }
FBackBuffer : TBitmap;
FFrontBuffer : TCanvas;
FColor : TColor;
ViewWidth, ViewHeight : Integer;
FWindowHandle : THandle;
HalfScreenWidth, HalfScreenHeight,

ViewingDistance : Integer;
FDistance : Integer;
procedure DrawLine3D(x1,y1,z1, x2,y2,z2 : Single);
procedure DrawLine2D(x1, y1, x2,y2 : Integer);
procedure SetDistance(Distance : Integer);

protected
{ Protected declarations }

public
{ Public declarations }
constructor Create(AOwner : TComponent) ; override;
destructor Destroy; override;
procedure ClearBackPage;
procedure RenderNow(var Object3D : TObject3D);
procedure FlipBackPage;
procedure Rotate(x,y,z, angle : Single;

var Object3D : TObject3D);
procedure ChangeObjectColor(var Object3D : TObject3D;

Color : TColor);
published

{ Published declarations }
property BackColor : TColor read FColor write FColor;
property ZDistance : Integer read FDistance write

SetDistance default -50;
end;

On the Cover
procedure Register;

implementation

procedure TGMP.SetDistance(Distance : Integer);
begin

FDistance := Distance;
end;

procedure TGMP.RenderNow(var Object3D : TObject3D);
var

A : Integer;
begin

FBackBuffer.Canvas.Pen.Color := Object3D.Color;
for A := 0 to Object3D.NumberLine - 1 do

with Object3D.LineStore[A] do
DrawLine3D(StartPoint.x, StartPoint.y, StartPoint.z,

EndPoint.x, EndPoint.y, EndPoint.z);
end;

procedure TGMP.ChangeObjectColor(var Object3D : TObject3D;
Color : TColor);

begin
Object3D.Color := Color;

end;

procedure TGMP.DrawLine3D(x1,y1,z1, x2,y2,z2 : Single);
var

Screenx1, Screenx2, Screeny1, Screeny2 : Integer;
begin

Screenx1 := HalfScreenWidth +
Round(X1*ViewingDistance/(Z1+(ZDistance)));

Screeny1 := Round(HalfScreenHeight-Y1*ViewingDistance /
(Z1+(ZDistance)));

Screenx2 := HalfScreenWidth +
Round(X2*ViewingDistance/(Z2+(ZDistance)));

Screeny2 := Round(HalfScreenHeight-Y2 *
ViewingDistance/(Z2+(ZDistance)));

DrawLine2D(Screenx1, Screeny1, Screenx2, Screeny2);
end;

procedure TGMP.Rotate(x,y,z, angle : Single; var
Object3D : TObject3D);

var
P : Integer;
NewX, NewY, NewZ : Single;

begin
for P := 0 to Object3D.NumberLine - 1 do

with Object3D.LineStore[P] do begin
if Z <> 0 then

begin
NewX := StartPoint.X * Cos(Angle) —

StartPoint.y * Sin(Angle);
NewY := StartPoint.X * Sin(Angle) +

StartPoint.y * Cos(Angle);
StartPoint.X := NewX;
StartPoint.y := NewY;
NewX := EndPoint.X * Cos(Angle) —

EndPoint.y * Sin(Angle);
NewY := EndPoint.X * Sin(Angle) +

EndPoint.y * Cos(Angle);
EndPoint.X := NewX;
EndPoint.y := NewY;

end;
if X <> 0 then

begin
NewY := StartPoint.Y * Cos(Angle) —

StartPoint.Z * Sin(Angle);
NewZ := StartPoint.Y * Sin(Angle) +

StartPoint.Z * Cos(Angle);
StartPoint.y := Newy;
StartPoint.z := Newz;
NewY := EndPoint.Y * Cos(Angle) —
12 January 1997 Delphi Informant
EndPoint.Z * Sin(Angle);
NewZ := EndPoint.Y * Sin(Angle) +

EndPoint.Z * Cos(Angle);
EndPoint.y := Newy;
EndPoint.z := Newz;

end;
if Y <> 0 then

begin
NewZ := StartPoint.Z * Cos(Angle) —

StartPoint.X * Sin(Angle);
NewX := StartPoint.X * Cos(Angle) +

StartPoint.Z * Sin(Angle);
StartPoint.z := NewZ;
StartPoint.x := NewX;
NewZ := EndPoint.Z * Cos(Angle) —

EndPoint.X * Sin(Angle);
NewX := EndPoint.X * Cos(Angle) +

EndPoint.Z * Sin(Angle);
EndPoint.z := NewZ;
EndPoint.x := NewX;

end;
end;

end;

procedure TGMP.DrawLine2D(x1, y1, x2,y2 : Integer);
begin

FBackBuffer.Canvas.MoveTo(x1, y1);
FBackBuffer.Canvas.LineTo(x2, y2);

end;

procedure TGMP.ClearBackPage;
begin

FBackBuffer.Canvas.Brush.Color := FColor;
FBackBuffer.Canvas.FillRect(Rect(0,0,ViewWidth,

ViewHeight));
end;

procedure TGMP.FlipBackPage;
var

ARect : TRect;
begin

ARect := Rect(0,0,ViewWidth,ViewHeight);
FFrontBuffer.CopyRect(ARect, FBackBuffer.Canvas, ARect);

end;

constructor TGMP.Create(AOwner : TComponent);
begin

{ We must call the inherited create of the Tcomponent
from which we derived this class }

inherited Create(AOwner);

{ Create the bitmap canvas }
FBackBuffer := TBitmap.Create;

{ Get a pointer to the Form's canvas }
FFrontBuffer := TForm(AOwner).Canvas;

{ Get the height and width of the window }
ViewHeight := TForm(AOwner).Height;
ViewWidth := TForm(AOwner).Width;

{ Set the bitmaps height }
FBackBuffer.Height := ViewHeight;
FBackBuffer.Width := ViewWidth;

{ Set up viewport }
HalfScreenHeight := ViewHeight div 2;
HalfScreenWidth := ViewWidth div 2;

{ Get the handle of the window }
FWindowHandle := TForm(AOwner).Handle;

{ Set the viewing distance }
ViewingDistance := 200;

On the Cover
{ Set the Z distance }
ZDistance := -50;

end;

destructor TGMP.Destroy;
begin

{ Free the Tbitmap }
Fbackbuffer.Free;
inherited;

end;

procedure Register;
begin

RegisterComponents('Graphics', [TGMP]);
end;

end.
End Listing One
Begin Listing Two — The Article1 Unit
unit Article1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, ExtCtrls, Gmp, Menus;

type
TPyramidArray = array [0..47] of Integer;
TCubeArray = array [0..71] of Integer;

TForm1 = class(TForm)
GMP1 : TGMP;
Timer1 : TTimer;
MainMenu1 : TMainMenu;
Object1 : TMenuItem;
Cube1 : TMenuItem;
Pyramid1 : TMenuItem;

procedure Timer1Timer(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure Pyramid1Click(Sender: TObject);
procedure Cube1Click(Sender: TObject);

public
Pyramid : TObject3D;
Cube : TObject3D;
CurrentObject : TPObject3D;

end;

const
PyramidPoints : TPyramidArray =

(0, -10, 0, 10, 10, 10,
10, 10, 10, -10, 10, 10,

-10, 10, 10, 0, -10, 0,
0, -10, 0, 10, 10, -10,

10, 10, -10, -10, 10, -10,
-10, 10, -10, 0, -10, 0,
-10, 10, 10, -10, 10, 10,
10, 10, -10, 10, 10, 10,);

CubePoints : TCubeArray =
(-10, 10, 10, 10, 10, 10,
10, 10, 10, 10, -10, 10,
10, -10, 10, -10, -10, 10,

-10, -10, 10, -10, 10, 10,
-10, 10, -10, 10, 10, -10,
10, 10, -10, 10, -10, -10,
10, -10, -10, -10, -10, -10,

-10, -10, -10, -10, 10, -10,
10, 10, 10, 10, 10, -10,
10, -10, 10, 10, -10, -10,

-10, 10, 10, -10, 10, -10,
-10, -10, 10, -10, -10, -10,);

var
Form1: TForm1;

implementation
13 January 1997 Delphi Informant
{$R *.DFM}

procedure TForm1.Timer1Timer(Sender: TObject);
begin

with GMP1 do begin
ClearBackPage;
Rotate(1,1,0,0.1, CurrentObject^);
RenderNow(CurrentObject^);
FlipBackPage;

end;
end;

procedure TForm1.FormShow(Sender: TObject);
var

LineCount, ArrayCount : Integer;
begin

for LineCount := 0 to 7 do begin
ArrayCount := LineCount * 6;
Pyramid.LineStore[LineCount].StartPoint.x :=

PyramidPoints[ArrayCount];
Pyramid.LineStore[LineCount].StartPoint.y :=

PyramidPoints[ArrayCount + 1];
Pyramid.LineStore[LineCount].StartPoint.z :=

PyramidPoints[ArrayCount + 2];
Pyramid.LineStore[LineCount].EndPoint.x :=

PyramidPoints[ArrayCount + 3];
Pyramid.LineStore[LineCount].EndPoint.y :=

PyramidPoints[ArrayCount + 4];
Pyramid.LineStore[LineCount].EndPoint.z :=
PyramidPoints[ArrayCount + 5];

end;
Pyramid.NumberLine := 8;
Pyramid.Color := clYellow;
for LineCount := 0 to 11 do begin

ArrayCount := LineCount * 6;
Cube.LineStore[LineCount].StartPoint.x :=

CubePoints[ArrayCount];
Cube.LineStore[LineCount].StartPoint.y :=

CubePoints[ArrayCount + 1];
Cube.LineStore[LineCount].StartPoint.z :=

CubePoints[ArrayCount + 2];
Cube.LineStore[LineCount].EndPoint.x :=

CubePoints[ArrayCount + 3];
Cube.LineStore[LineCount].EndPoint.y :=

CubePoints[ArrayCount + 4];
Cube.LineStore[LineCount].EndPoint.z :=

CubePoints[ArrayCount + 5];
end;
Cube.NumberLine := 12;
Cube.Color := clYellow;
CurrentObject := @Cube;
Cube1.Checked := True;

end;

procedure TForm1.Cube1Click(Sender: TObject);
begin

if (Cube1.Checked = True) then
Exit;

Cube1.Checked := True;
Pyramid1.Checked := False;
CurrentObject := @Cube;

end;

procedure TForm1.Pyramid1Click(Sender: TObject);
begin

if (Pyramid1.Checked = True) then
Exit;

Pyramid1.Checked := True;
Cube1.Checked := False;
CurrentObject := @Pyramid;

end;

end.

End Listing Two

14 January 1997 Delphi Informant

Informant Spotlight
Delphi 2 / Object Pascal

By Danny Thorpe

Virtual Methods,
Inside Out
Virtual Methods and Polymorphism: Part I
Polymorphism is perhaps the cornerstone of object-oriented program-
ming (OOP). Without it, OOP would have only encapsulation and

inheritance — data buckets and hierarchical families of data buckets — but
no way to uniformly manipulate related objects.
Polymorphism is the key to leveraging your
programming investments to enable a relatively
small amount of code to drive a wide variety of
behaviors, without requiring carnal knowledge
of the implementation details of those behav-
iors. However, before you can extend existing
Delphi components, or design new, extensible
component classes, you must have a firm
understanding of how polymorphism works
and the opportunities it provides.

True to its name, polymorphism allows
objects to have “many forms” in Delphi, and
a component writer typically uses a mix of all
these forms to implement a new component.
In this article, we’ll closely review the imple-
mentation and use of one of Delphi’s poly-
morphism providers, the virtual method, and
some of its more peculiar sand traps and
exotic applications, e.g. its part in making
.EXEs smaller. (Dynamic methods, message
methods, and class reference types are
Delphi’s other polymorphism providers, but
are outside the scope of this article.)

This article assumes you are familiar with
Delphi class declaration syntax and general
OOP principles. If you’re a bit rusty with
these concepts, you should first refer to the
Delphi Language Reference. Also note that in
this article, “virtual” denotes the general
term that applies to all forms of virtual
methods (i.e. methods declared with virtual,
dynamic, or override), and “virtual”
denotes the specific term that refers only to
methods declared with the virtual directive.
For example, most polymorphism concepts
and issues apply to all virtual methods, but
there are a few noteworthy items that apply
only to virtual methods.

Review: Syntax of Virtual Methods
Here’s a review of the two kinds of virtual
methods and four language directives used to
declare them:

Virtual methods come in two flavors: vir-
tual and dynamic. The only difference
between them is their internal implemen-
tations; that is, they use different tech-
niques to achieve the same results.
Calls to virtual methods are dispatched
more quickly than calls to dynamic
methods.
Seldom-overridden virtual methods
require much more storage space for their
compiler-generated tables than dynamic
methods.
The keywords, virtual and dynamic,
always introduce a new method name
into a class’ name space.
The override directive redefines the
implementation of an existing virtual
method (virtual or dynamic) that a class
inherits from an ancestor.

Informant Spotlight
The override method uses the same dispatch mechanism
(virtual or dynamic) as the inherited virtual method it
replaces.
The abstract directive indicates that no method body is asso-
ciated with that virtual method declaration. Abstract declara-
tions are useful for defining a purely conceptual interface,
which is in turn useful for maintaining absolute separation
between the user of a class and its implementation.
The abstract directive can only be used in the declaration
of new virtual (virtual or dynamic) methods; you can’t
make an implemented method abstract after the fact.
A class type that contains one or more abstract methods is an
abstract class.
A class type that contains nothing but abstract methods
(no static methods, no virtual methods, no data fields) is
called an abstract interface (or, in C++ circles, a pure virtu-
al interface).

Polymorphism in Action
What do virtual methods do? In general, they allow a
method call to be directed, at run time, to the appropriate
piece of code, appropriate for the type of the object instance
used to make the call. For this to be interesting, you must
have more than one class type, and the class types must be
related by inheritance from a common ancestor.

Figure 1 shows the three classes we’ll use to explore the execu-
tion characteristics of polymorphism: a simple base class named
TBaseGadget that defines a static method named NotVirtual and
a virtual method, ThisIsVirtual; and two descendant classes,
TKitchenGadget and TOfficeGadget, that override the
ThisIsVirtual method they inherit from TBaseGadget.
TOfficeGadget also introduces a new static method named
NotVirtual and a new virtual method named NewMethod.
Figure 1: Three classes to explore polymorphism.

type
TBaseGadget = class

procedure NotVirtual(X: Integer);
procedure ThisIsVirtual(Y: Integer); virtual;

end;

TKitchenGadget = class(TBaseGadget)
procedure ThisIsVirtual(Y: Integer); override;

end;

TOfficeGadget = class(TBaseGadget);
function NewMethod: Longint; virtual;
procedure NotVirtual(X,Y,Z: Integer);
procedure ThisIsVirtual(Y: Integer); override;

end;
Figure 2: Execution with an instance of TKitchenGadget.

var
P : TBaseGadget;

begin
P := TKitchenGadget.Create;
P.NotVirtual(10); { Call TBaseGadget.NotVirtual }
P.ThisIsVirtual(5); { Call TKitchenGadget.ThisIsVirtual }
P.Free;

end;

Figure 3: Execution with an instance of TOfficeGadget.

var
P : TBaseGadget;

begin
P := TOfficeGadget.Create;
P.NotVirtual(10); { Call TBaseGadget.NotVirtual }

{ The compiler will not allow the following two lines:
P.NotVirtual(1,2,3); "Too many parameters"
P.NewMethod; "Method identifier expected" }

P.ThisIsVirtual(5); { Call TOfficeGadget.ThisIsVirtual }
P.Free;

end;
Identical names in different classes aren’t related.
Declaring a static method in a descendant that happens to
have the same name as a static method in an ancestor is
not a true override. Other than same-name similarity, no
relationship exists between static methods declared in a
descendant and static methods declared in an ancestor
class. Your brain makes an association, but the compiler
does not. For instance, TBaseGadget has a NotVirtual
method, and TOfficeGadget has a disparate method, also
named NotVirtual.
15 January 1997 Delphi Informant
If we start with a variable P of type TBaseGadget, we can
assign to it an instance of a TBaseGadget; or an instance of
one of its descendants, such as a TKitchenGadget or
TOfficeGadget. Recall that Delphi object instance variables
are pointers to the instance data allocated from the global
heap, and that pointers of a class type are type compatible
with all descendants of that type. We can then call meth-
ods using the instance variable P:

var
P : TBaseGadget;

begin
P := TBaseGadget.Create;
P.NotVirtual(10); { Call TBaseGadget.NotVirtual }
P.ThisIsVirtual(5); { Call TBaseGadget.ThisIsVirtual }
P.Free;

end;

(In the interest of brevity, I’ll fold the execution traces into com-
ments in the source code. You can step through the sample code
to verify the execution trace.)

If P refers to an instance of TKitchenGadget, the execution
trace would resemble the code in Figure 2. Nothing remark-
able here; we have one call to a static method going to the
version defined in the ancestor type, and one call to a virtual
method going to the version of the method associated with
the object instance type.

You may deduce that the inherited static method, NotVirtual,
is called because TKitchenGadget doesn’t override it. This obser-
vation is correct, but the explanation is flawed, as Figure 3
shows. If P refers to an instance of TOfficeGadget, you may be
a little puzzled by the result.

Static method calls are resolved by variable type. Although
TOfficeGadget has its own NotVirtual method, and P refers to
an instance of TOfficeGadget, why does TBaseGadget.NotVirtual
get called instead? This occurs because static (non-virtual)

Informant Spotlight

Figure 4: Polymorphism allows ancestors to call into descen-
dants.

procedure TBaseGadget.NotVirtual;
begin

ThisIsVirtual(17);
end;

var
P: TBaseGadget;

begin
P := TKitchenGadget.Create;
P.NotVirtual(10); { Call TBaseGadget.NotVirtual }
P.Free;

end.
method calls are resolved at compile time according to the type
of the variable used to make the call. For static methods, what
the variable refers to is immaterial. In this case, P ’s type is
TBaseGadget, meaning the NotVirtual method associated with
P ’s declared type is TBaseGadget.NotVirtual.

Notice that NewMethod defined in TOfficeGadget is out of
reach of a TBaseGadget variable. P can only access fields and
methods defined in its TBaseGadget object type.

New names obscure inherited names. Let’s say P is declared
as a variable of type TOfficeGadget. The following method
call would be allowed:

P.NotVirtual(1,2,3)

However, this method call:

P.NotVirtual(1)

would not be allowed, because TOfficeGadget.NotVirtual
requires three parameters.

TOfficeGadget.NotVirtual obscures the TBaseGadget.NotVirtual
method name in all instances and descendants of TOfficeGadget.
The inherited method is still a part of TOfficeGadget (proven by
the code in Figure 3); you just can’t get to it directly from
TOfficeGadget and descendant types.

To get past this, you must typecast the instance variable:

TBaseGadget(P).NotVirtual(1)

If P were declared as a TOfficeGadget variable,
P.NewMethod would also be allowed, because the compiler
can “see” NewMethod in a TOfficeGadget variable.

Descendant >= ancestor. An instance of a descendant type
could be greater than its ancestor type in both services and data.
However, the descendant-type instance can never be less than
what its ancestors define. This makes it possible for you to use a
variable of an ancestral type (e.g. TBaseGadget) to refer to an
instance of a descendant type without loss of information.

Inheritance is a one-way street. With a variable of a particular
class type, you can access any public symbol (field, property, or
method) defined in any of that class’ ancestors. You can assign
an instance of a descendant class into that variable, but cannot
access any new fields or methods defined by the descendant
class. The fields of the descendant class are certainly in the
instance data that the variable refers to, yet the compiler has no
way of knowing that run-time situation at compile time.

There are two ways around this “nearsightedness” of ancestral
class types:

Typecasting — The programmer assumes a lot and forces
the compiler to treat the variable as a descendant type.
Virtual methods — The magic of virtual will call the
method appropriate to the type of the associated instance,
determined at run time.
16 January 1997 Delphi Informant
Ancestors set the standard. Why do we care about the
nearsightedness of ancestral classes? Why not simply use
the matching variable type when you create or manipulate
an object instance? Sometimes this is the simplest thing to
do. However, this “simplest” solution falls apart when you
begin talking about manipulating multiple classes that do
almost the same things.

Ancestral class types set the minimum interface standard
through which we can access a set of related objects.
Polymorphism is the use of virtual methods to make one verb
(method name) produce one of many possible actions
depending on the context (the instance). To have multiple,
possible actions, you must have multiple class types (e.g.
TKitchenGadget and TOfficeGadget) each potentially defining
a different implementation of a particular method.

To be able to make one call that could cover those multiple
class types, the method must be defined in a class from which
all the multiple class types descend — in an ancestral class such
as TBaseGadget. The ancestral class, then, is the least common
denominator for behavior across a set of related classes.

For polymorphism to work, all the actions common to the
group of classes need to at least be named in a common
ancestor. If every descendant is required to override the ances-
tor’s method, the ancestral method doesn’t need to do any-
thing at all; it can be declared abstract.

If there is a behavior that is common to most of the classes in
the group, the ancestor class can pick up that default behavior
and leave the descendants to override the defaults only when
necessary. This consolidates code higher in the class hierarchy,
for greater code reuse and smaller total code size. However, pro-
viding default behaviors in an ancestor class can also complicate
the design issues of creating flexible, extensible classes, since
what is done by ancestors usually cannot be entirely undone.

Polymorphism lets ancestors reach into descendants.
Another aspect of polymorphism doesn’t appear to involve
instance pointer types at all — at least not explicitly.

Consider the code fragment in Figure 4. The
TBaseGadget.NotVirtual method contains an unqualified call to
ThisIsVirtual. When P refers to an instance of TKitchenGadget,

Figure 5: The structure of the Virtual Method Table, and its relationship to the object instance.

Informant Spotlight
P.NotVirtual will call TBaseGadget.NotVirtual. Nothing new, so
far. However, when that code calls ThisIsVirtual, it will execute
TKitchenGadget.ThisIsVirtual. Surprise! Even within the depths
of TBaseGadget, a non-virtual method, a virtual method call is
directed to the appropriate code.

How can this be? The resolution of virtual method calls
depends on the object instance associated with the call. A
pointer to the object instance is secretly passed into all
method calls, surfacing inside methods as the Self identifier.
Inside TBaseGadget.NotVirtual, a call to ThisIsVirtual is actu-
ally a call to Self.ThisIsVirtual. Self, in this context, operates
like a variable of type TBaseGadget that refers to an instance
of type TKitchenGadget. Thus, when the instance type is
TKitchenGadget, the virtual method call resolves, at run time,
to TKitchenGadget.ThisIsVirtual.

How is this useful? An ancestral method — virtual or not —
can call a sequence of virtual methods. The descendants can
determine the specific behavior of one or more of those vir-
tual methods. The ancestor determines the sequence in
which the methods are called, plus miscellaneous setup and
cleanup code. The ancestor, however, does not completely
determine the final behavior of the descendants. The descen-
dants inherit the sequence logic from the ancestor, and can
override one or more of the steps in that sequence. But, the
descendants don’t have to reproduce the entire sequence
logic. This is one of the ways OOP promotes code reuse.

Fully-qualified method calls are reduced to static calls. As a
footnote, consider what happens if TBaseGadget.NotVirtual
contains a qualified call to TBaseGadget.ThisIsVirtual:

procedure TBaseGadget.NotVirtual;
begin

TBaseGadget.ThisIsVirtual(17);
end;

Although ThisIsVirtual is a virtual method, a fully-quali-
fied method call will compile down to a regular static
17 January 1997 Delphi Informant
method call. You’ve specified that you want only the
TBaseGadget.ThisIsVirtual method called, so the compiler
does exactly what you tell it to do. Dispatching this as a
virtual method call may call some other version of that
method, which would violate your explicit instructions.
Except in special circumstances, you don’t want this in
your code because it defeats the whole purpose of making
ThisIsVirtual virtual.

The Virtual Method Table
A Virtual Method Table (VMT) is an array of pointers to all
the virtual methods defined in a class and all the virtual
methods the class inherits from its ancestors. A VMT is creat-
ed by the compiler for every class type, because all classes
descend from TObject and TObject has a virtual destructor
named Destroy. In Delphi, VMTs are stored in the program’s
code space. Only one VMT exists per class type; multiple
instances of the same class type refer to the same VMT. At
run time, the VMT is a read-only lookup table.

Structure of the VMT. As shown in Figure 5, the first four
bytes of data in an object instance are a pointer to that class
type’s VMT. The VMT pointer points to the first entry in the
VMT’s list of four-byte pointers to the entry points of the
class’ virtual methods. Since methods can never be deleted in
descendant classes, the location of a virtual method in the
VMT is the same throughout all descendant classes. Thus,
the compiler can view a virtual method simply as a unique
entry in the class’ VMT. As we’ll see shortly, this is exactly
how virtual method calls are dispatched. Thinking of virtual
methods as indexes into an array of code pointers will also
help us visualize how method name conflicts are resolved by
the compiler.

The VMT does not contain information indicating how
many virtual methods are stored in it or where the VMT
ends. The VMT is constructed by the compiler and accessed
by compiler-generated code, so it doesn’t need to make notes
to itself about size or number of entries. (This does, however,

Informant Spotlight

Danny Thorpe is a Delphi R&D engineer at Borland. He has also served as techni-
cal editor and advisor for dozens of Delphi programming books, and recently com-
pleted his book, Delphi Component Design, on advanced topics in Delphi pro-
gramming. When he happens upon some spare time, he rewrites his to-do list
manager to ensure that it doesn’t happen again.
make it difficult for BASM code to call virtual methods.)
Optimization note. A descendant of a class with virtual meth-
ods gets a new copy of the ancestor’s VMT table. The descen-
dant can then add new virtual methods or override inherited
virtual methods without affecting the ancestor’s VMT. For
example, if the ancestor has a 12-entry VMT, the descendant
has at least a 12-entry VMT. Every descendant class type of
that ancestor, and all descendants of those descendants, will
have at least 12 entries in their individual VMTs.

All these VMTs occupy memory. For most programs, this
won’t be a problem, but extraordinarily large class types
with thousands of virtual methods and/or thousands of
descendants could consume quite a bit of memory, both in
RAM and .EXE file size; dynamic methods are much more
space efficient, but incur a slight execution speed penalty.

Now let’s examine the mechanics behind the magic of virtual
method calls.

Inside a virtual method call. When the compiler is compiling
your source code and encounters a call to a virtual method
identifier, it generates a special sequence of machine instruc-
tions that will unravel the appropriate call destination at run
time. The following machine code snippets assume compiler
optimizations are enabled, and stack frames are disabled:

// Machine code for statement P.SomeVirtualMethod;

{ Move instance data address (P^) into EAX }
MOV EAX, [EBP+4]
{ Move instance’s VMT address into ECX }
MOV ECX, [EAX]
{ Call address stored at VMT index 2 }
CALL [ECX + 08]
18 January 1997 Delphi Informant
The VMT pointer is always stored at offset 0 (zero) in the
instance data. In this example, the method being called is the
third virtual method of a class, including inherited virtual
methods. The first virtual method is at offset 0, the second at
offset 4, and the third at offset 8.

Conclusion
That’s it — all the magic of virtual methods and polymor-
phism boils down to this: the indicator of which virtual
method to invoke on the instance data is stored in the
instance data itself.

Next month, we’ll conclude our series with a discussion of
abstract interfaces and how virtual methods can defeat and
enhance “smart linking.” See you then. ∆

This article is adapted from material for Danny Thorpe’s book,
Delphi Component Design [Addison-Wesley, 1996].

19 January 1997 Delphi Informant

DBNavigator
Delphi 1 / Delphi 2

By Cary Jensen, Ph.D.

INI, the Registry, or Both?
Three Approaches to Creating MRU Lists

Figure 1: A por

[Library]
SearchPath=C:\D
ComponentLibrar
SaveLibrarySour
MapFile=0
LinkBuffer=0
DebugInfo=0

[Gallery]
BaseDir=C:\DELP
GalleryProjects
GalleryForms=1
Many applications require configuration and initialization information
to be stored on a per-user basis; for example, to retain a list of the

files a user has accessed most recently. Similarly, some applications permit
a user to select a custom bitmap to display as a background.
The standard technique for saving this type
of information is to use INI files in
Windows 3.1x, and the Registry in
Windows 95 and Windows NT. This
month’s installment offers an overview of
how to save this information, focusing on
the creation of a “most recently used”
(MRU) file list as an example.

Using INI Files
In Windows 3.1x, the standard technique for
storing user-specific information is to employ
an INI (initialization) file. While typically
stored in the Windows directory, it can also
be stored in the same directory as the EXE
file (as long as the EXE isn’t stored in a
shared directory). Delphi 1, for example,
stores information concerning its installation,
as well as user preferences and settings, in a
file named DELPHI.INI. A portion of this
file, located in the \WINDOWS directory, is
shown in Figure 1.
tion of the DELPHI.INI file.

ELPHI\LIB
y=C:\DELPHI\BIN\COMPLIB.DCL
ce=0

HI\GALLERY
=1
The structure of an INI file is simple. Each
contains one or more sections. The name of
each section appears within brackets. Each
section contains zero, one, or multiple keys.
The name of each key appears on a separate
line, and is separated from its value by the
“equal” sign (=). In Figure 1, for example,
the INI file contains a section named
Library. Within this section is a key
named SearchPath. The value of this key
is C:\DELPHI\LIB.

Delphi provides a unit named IniFiles that
defines the TIniFile class. This class encapsu-
lates all the basic calls you need to work with
INI files. You create an instance of the
TIniFile class (i.e. an object of type IniFile)
by calling its Create constructor. This method
has the following syntax:

constructor Create(const FileName: string);

You pass a single string parameter when you
call Create. This parameter identifies the name
of an INI file that will be either opened or
created (e.g. 'TestINI.INI'). If the specified
INI file does not exist, calling Create creates it.
Otherwise, Create opens the INI file. If the
file name you supply includes a DOS path,
the INI file will be created or opened in the
directory you specify. If you omit the path,
the Windows directory is used by default.

Once you’ve created an INI file, you’re ready
to read and write keys to it, using the

DBNavigator

Figure 2: This application’s MRU list is stored in an INI file.

Figure 3: Event handlers for the example MRU application.

procedure TForm1.FormCreate(Sender: TObject);
begin

MRUS := TStringList.Create;
LoadMRU;
DisplayMRU;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

WriteMRU;
MRUS.Free;

end;

procedure TForm1.Open1Click(Sender: TObject);
begin

if OpenDialog1.Execute then
begin

Form2 := TForm2.Create(Self);
Form2.Caption := OpenDialog1.FileName;
UpdateMRU(OpenDialog1.FileName);

end;
end;
WriteString, WriteBool, and WriteInteger methods. This is the
syntax of the WriteString method:

procedure WriteString(const Section, Ident, Value: string);

When calling WriteString, you pass three string parameters.
The first is the name of the section you’re writing to, the sec-
ond is the name of the key, and the third is the value you’re
assigning to the key.

The corresponding read methods are ReadString, ReadBool,
and ReadInteger. The following is the syntax of ReadString:

function ReadString(const Section, Ident,
Default: string): string;

When you call ReadString, you pass the name of the section
and the key that you want to read. In addition, you pass a
third argument whose value ReadString retains if the specified
section and key do not exist.

These methods are employed in the project named INI.DPR,
shown in Figure 2. This project demonstrates how to imple-
ment a generic MRU list for a Delphi menu. Using this
example code, however, requires some preparation.
Specifically, you must perform the following steps:
1) Add the IniFiles unit to the uses clause for the form. This

clause can appear in either the interface or the implemen-
tation section of the unit.

2) Create a MainMenu object that includes one
TMenuItem object for each of the MRU values in the
list. These TMenuItem objects must use the naming
convention MRU1, MRU2, MRU3, and so forth. For
example, if you plan to permit a maximum of four
items in your MRU list, your MainMenu must include
TMenuItem objects with the names MRU1, MRU2,
MRU3, and MRU4.

3) You must add a separator to the menu immediately pre-
ceding the MRU-related menu items. Furthermore, this
TMenuItem must be named MRUDiv.
20 January 1997 Delphi Informant
4) You must add four methods to your form’s type definition:

procedure LoadMRU;
procedure UpdateMRU(const FileName: string);
procedure WriteMRU;
procedure DisplayMRU;

5) You must add a constant named MaxMRUS to your
form’s unit. Assign to this constant the integer associated
with the maximum number of items in your MRU list.
For example, if you permit a maximum of four items,
your const statement will look like this:

const
MaxMRUS = 4;

6) Add a var declaration to your form’s unit, as follows:

var
MRUS: TStringList;
MRUSChanged: Boolean;
Ini: TIniFile;

7) Implement the new methods described in step 4. An
example of these methods implemented for a TForm1
class is shown in Listing Three on page 23.

Using these methods is straightforward. Call LoadMRU and
DisplayMRU from the form’s OnCreate event handler. Each time
a new file is opened, call UpdateMRU. Finally, call WriteMRU
from the form’s OnDestroy event handler. You should also explic-
itly free both the IniFile object and the StringList object from
within the OnDestroy event handler. Figure 3 shows examples of
how these event handlers might look.

Using the Registry
While Windows 3.1x makes extensive use of INI files for stor-
ing client-specific information, Windows 95 and Windows NT
encourage the use of the Registry for this purpose. The Registry
is a centralized information database used as a repository for all
client information by Windows 95 and Windows NT. You can

Figure 4: REGEDIT.EXE allows you to view the Registry Editor.

DBNavigator

Figure 5: Though nearly identical to INI.DPR, INIREG.DPR uses
an INI file when compiled in Delphi 1, and the Registry when
compiled by Delphi 2.
view the Registry Editor using REGEDIT.EXE (see Figure 4),
an application located in the \WINDOWS folder.

The Registry consists of keys, subkeys, values, and data. This
information is depicted hierarchically, meaning that a key
may contain subkeys, and those subkeys may also contain
subkeys. Typically, the lowest subkey on a branch will have
one or more values displayed in the right panel of the
Registry Editor dialog box. Within this right panel, the name
of the value appears in the left column, and the data associat-
ed with that value appears in the right column.

The Registry offers many advantages over INI files:
The Registry does not have an inherent size limit; INI
files are limited to 64KB.
The Registry is structured hierarchically, giving you more
flexibility in how information is stored, and making spe-
cific values easier to locate.
The Registry can be administered remotely by a system
administrator (or your Delphi code, for that matter).
A single Registry can store information about multiple
users.

Delphi 2 has two Object Pascal classes for working with the
Registry. These are TRegIniFile and TRegistry. Both are
defined in the Registry unit.

Using the TRegIniFile Class
The TRegIniFile class is designed to permit applications writ-
ten with the TIniFile class to be quickly and easily converted
to Registry use. All methods and properties of the TIniFile
class are present in the TRegIniFile class. This permits you to
upgrade an application simply by changing all TIniFile class
references to TRegIniFile.

The Create method of TRegIniFile either opens or creates a
subkey in the HKEY_CURRENT_USER root key, using the
file name as the key name. For example, the code in Listing
Three creates an INI file named MRU.INI. If you change the
TIniFile references to TRegIniFile, and replace the IniFiles
unit with the TRegistry unit, this code will create a key
named MRU.INI under the HKEY_CURRENT_USER root
key. Furthermore, instead of creating sections using the write
methods, subkeys to MRU.INI will be created. In addition,
keys written to a section become values within the subkey.
21 January 1997 Delphi Informant
One of the major advantages of the TRegIniFile unit is that it
permits you to create a single source file compilable by either
Delphi 1 or 2 — if you’re willing to include a few condition-
al compiler directives. For example, you can replace each
TIniFile variable declaration with a conditional compiler
directive that will create a TIniFile variable under Delphi 1,
or a TRegIniFile variable under Delphi 2.

The following code segment demonstrates how this should look:

var
{$IFDEF Win32}

Ini: TRegIniFile;
{$ELSE}

Ini: TIniFile;
{$ENDIF}

Furthermore, you must also use conditional compiler direc-
tives when calling the Create constructor for the declared
variable, as well as for the uses clause. For example, the fol-
lowing code calls the TIniFile constructor under Delphi 1,
and the TRegIniFile constructor under Delphi 2:

{$IFDEF Win32}
Ini := TRegIniFile.Create('mru.ini');

{$ELSE}
Ini := TIniFile.Create('mru.ini');

{$ENDIF}

An example of a project that uses these techniques is shown
in Figure 5. This project is named INIREG.DPR. Figure 6
shows how the Registry appears at run time after compiling
the INIREG application under Delphi 2.
Using the TRegistry Class
The TRegIniFile class is extremely useful when creating applica-
tions that must be used in both 16- and 32-bit environments, as
well as for quickly porting applications to a 32-bit environment.
It’s limited, however, in that it permits you to add subkeys only
directly under the HKEY_CURRENT_USER root key.

For more complete control, you should use the TRegistry class,
which permits you to add subkeys and values to any key within
the Registry. While the TRegistry class contains a large number

Figure 6: This is how the Registry Editor appears after running
INIREG.DPR compiled with Delphi 2.

DBNavigator
of methods, most of the work you’ll do can be accomplished
with a select few. Among the most valuable are Create, KeyExists,
OpenKey, CreateKey, and ValueExists. The write and read meth-
ods (such as WriteString and ReadString) are essential as well.

Create is used to initialize a TRegistry descendant. Unlike
the Create constructor for the TIniFile and TRegIniFile
classes, TRegistry.Create requires no arguments. By default,
the root key when you create a Registry object is
HKEY_CURRENT_USER. You can change the root key
by using the RootKey property of the TRegistry class.

KeyExists tests whether a particular key exists. The key
whose existence you’re testing is relative to the root key
when you use an absolute address, and is relative to the
current key when using a relative address. Absolute address-
es begin with a backslash; relative addresses do not. To test
whether HKEY_CURRENT_USER\MRU.INI\MRUS
exists, you can use the following statement, regardless of
which is the current key:

if RegVar.KeyExists('\MRU.INI\MRUS') then
...

However, the statement:

RegVar.KeyExists('MRU.INI\MRUS')

evaluates to True only when a key named MRU.INI\MRUS
exists under the current key.

OpenKey makes the named key the current key; also, if you
pass a Boolean True as the second parameter in the call to
OpenKey, it will create the specified key if that key doesn’t
already exist. When using OpenKey, just as when using
KeyExists, you can give an absolute key name that begins with
a backslash, or a relative key name. For example, calling:

OpenKey('\Software\YourCompany\ThisApp',True)

opens or creates a key named HKEY_CURRENT_USER\-
SOFTWARE\YOURCOMPANY\THISAPP, and makes it the
current key. By comparison, calling:

OpenKey('MRUS',True)
22 January 1997 Delphi Informant
will open or create a key named MRUS under the current
key, and will make it the new current key.

CreateKey is used (again, as you might guess) to create new
keys. CreateKey is different from OpenKey in that it doesn’t
make the specified key the current key. As with the preceding
statements, you can use either an absolute or a relative
address to specify the key.

Finally, ValueExists tests whether a specified value exists under
the current key. Unlike TIniFile or TRegIniFile objects, which
permit you to read from a specified section and key even if
the key doesn’t exist, the TRegistry class will generate an
exception. Consequently, you’ll generally use ValueExists to
test the existence of a value before attempting to read from it.

The read and write methods for TRegistry are also different
from the associated methods of the TIniFile class. For exam-
ple, this is the syntax of the TRegistry.ReadString method:

function ReadString(const Name: string): string;

To use this method, pass the name of a value under the cur-
rent key. ReadString returns the data associated with that
value. Again, if the specified value doesn’t exist, an excep-
tion is generated.

The write methods in the Registry class are somewhat more
similar to their TIniFile counterparts than are the read meth-
ods. For example, this is the syntax of the
TRegistry.WriteString method:

procedure WriteString(const Name, Value: string);

The first parameter you pass to WriteString is the name of a
value under the current key. If the named value doesn’t
already exist, it will be created. The second is the data to
write to the specified key. In addition to the syntactical differ-
ences between the read and write methods of TRegistry and
those in the TIniFile class, the TRegistry class supports meth-
ods for reading and writing data types other than just string,
Boolean, and integer. Read and write methods are included
for binary, datetime, currency, and float data, among others.

The use of the TRegistry class is demonstrated in the project
REGISTRY.DPR. This project is quite similar to the INI.DPR
and INIREG.DPR projects discussed earlier. The primary dif-
ference revolves around the declaration of the Registry variable,
as well as the implementation of the four MRU methods. This
code is shown in Listing Four, beginning on page 23.

Figure 7 shows how the Registry looks after running
REGISTRY.DPR.

Conclusion
Delphi provides a number of options for saving user-specific
information from one execution of your application to the
next. For Windows 3.1x applications, use the TIniFile class to

Figure 7: The REGISTRY.DPR project writes to the Registry key
HKEY_CURRENT_USER\SOFTWARE\YOURCOMPANY\THISAPP\MRUS.

DBNavigator
write to INI files. For applications that must be compiled
under both Delphi 1 and 2, you can use the TRegIniFile
class. Finally, when creating 32-bit applications with Delphi
2, use the TRegistry class. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JAN\DI9701CJ.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor to Delphi
Informant. You can reach Jensen Data Systems at (713) 359-3311, or via
CompuServe at 76307,1533.
Begin Listing Three — Example MRU Implementation
procedure TForm1.LoadMRU;
var

Ini: TIniFile;
i: Integer;
Value: string;

begin
Ini := TIniFile.Create('mru.ini');
try

{ Load MRUs into Tstrings }
for i := 1 to MaxMRUS do

begin
Value := Ini.ReadString(

'MRUS',Concat('MRU',IntToStr(i)),'');
MRUS.Add(value);

end;
{ Remove blank MRUs }
while MRUS.IndexOf('') <> -1 do

MRUS.Delete(MRUS.IndexOf(''));
finally

Ini.Free;
end;

end;

procedure TForm1.DisplayMRU;
var

MI: TMenuItem;
i: Integer;

begin
i := 0;
while (i < (MRUS.Count)) and (i < MaxMRUS) do

begin
23 January 1997 Delphi Informant
MI := TMenuItem(FindComponent(Concat(
'mru',inttoStr(i+1))));

MI.Visible := True;
MI.Caption := MRUS.Strings[i];
Inc(i);

end;
MRUDiv.Visible := MRU1.Visible;

end;

procedure TForm1.UpdateMRU(const filename: string);
var

i: Integer;
begin

MRUSChanged := True;
if MRUS.IndexOf(filename) = -1 then

{ Add filename to top, move all down }
begin

MRUS.Insert(0,filename);
{ Remove last item if MRU list already full }
if MRUS.Count > MAXMRUS then

MRUS.Delete(MAXMRUS-1);
end

else
MRUS.Move(MRUS.IndexOf(filename),0);

DisplayMRU;
end;

procedure TForm1.WriteMRU;
var

Ini: TIniFile;
i: Integer;

begin
if MRUSChanged then

begin
Ini := TIniFile.Create('mru.ini');
try

i := 0;
while (i < (MRUS.Count)) and (i < MaxMRUS) do begin

Ini.WriteString('MRUS',Concat('mru',
inttoStr(i+1)),MRUS.Strings[i]);

Inc(i);
end;

finally
Ini.Free;

end;
end;

end;
End Listing Three
Begin Listing Four — Demonstrating the TRegistry Class
var

{ Hold the MRUs during the application }
MRUS: TStringList;
{ Flag for writing MRUs from OnDestroy for form }
MRUSChanged: Boolean;
Reg: TRegistry;

procedure TForm1.LoadMRU;
var

i: Integer;
Value: string;

begin
Reg := TRegistry.Create;
try

Reg.OpenKey('\Software\YourCompany\ThisApp\MRUS',True);
{ Load MRUs into Tstrings }
for i := 1 to MaxMRUS do begin

if Reg.ValueExists(Concat('MRU',IntToStr(i))) then
begin

Value := Reg.ReadString(
Concat('MRU',IntToStr(i)));

MRUS.Add(value);
end

else
Break;

end;

DBNavigator
finally
Reg.Free;

end;
end;

procedure TForm1.DisplayMRU;
var

MI: TMenuItem;
i: Integer;

begin
i := 0;
while (i < (MRUS.Count)) and (i < MaxMRUS) do begin

MI := TMenuItem(FindComponent(Concat('mru',
inttoStr(i+1))));

MI.Visible := True;
MI.Caption := MRUS.Strings[i];
Inc(i);

end;
MRUDiv.Visible := MRU1.Visible;

end;

procedure TForm1.UpdateMRU(const filename: string);
var

i: Integer;
begin

MRUSChanged := True;
if MRUS.IndexOf(filename) = -1 then

{ Add filename to top, move all down }
begin

MRUS.Insert(0,filename);
{ Remove last item if MRU list already full }
if MRUS.Count > MAXMRUS then

MRUS.Delete(MAXMRUS-1);
end

else
MRUS.Move(MRUS.IndexOf(filename),0);

DisplayMRU;
end;

procedure TForm1.WriteMRU;
var

i: Integer;
begin

if MRUSChanged then
begin

Reg := TRegistry.Create;
try

Reg.OpenKey('\Software\YourCompany\ThisApp\MRUS',
True);

i := 0;
while (i < (MRUS.Count)) and (i < MaxMRUS) do begin

Reg.WriteString(Concat('mru',
inttoStr(i+1)),MRUS.Strings[i]);

Inc(i);
end;

finally
Reg.Free;

end;
end;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

MRUS := TStringList.Create;
LoadMRU;
DisplayMRU;

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

WriteMRU;
MRUS.Free;

end;
End Listing Four
24 January 1997 Delphi Informant

25 January 1997 Delphi Informant

OP Tech
Delphi 1 / Delphi 2

By Ray Lischner

Stream of Consciousness
The VCL’s Internal Component Messages
The components in the VCL send messages among themselves to com-
municate events, changes in state, and other information. When you

write a custom component, you can usually inherit the correct message
handlers from one of Delphi’s control classes, such as TCustomControl or
TGraphicControl. In some cases, however, you might need to handle these
internal messages differently. This article describes some of the internal
messages the VCL uses.
The component messages are generated by
the VCL in response to Windows messages
and user actions. The default action of a com-
ponent when it receives many of the VCL
component messages is to broadcast that mes-
sage to all its child components. These mes-
sages originate with a Windows control that
receives a standard Windows message.

For example, a form receives a
Wm_WinIniChange message, and broadcasts
a Cm_WinIniChange message to its children,
which in turn broadcast that message to their
children, until it’s been sent to every child on
the form (see Figure 1).

This enables you to write components that
can respond to standard Windows messages
without interfering with the form, which is
important when you’re writing a reusable
component. The component can silently do
its work, responding to messages the form
automatically sends; the application pro-
grammer never needs to be concerned with
these details.

Other Cm_ messages are generated by VCL
components to broadcast to their child com-
ponents, informing the children of a change
in the parent’s state. For example, when you
set the Color property of a control, it broad-
casts the Cm_ParentColorChanged message
to its children so they can respond to the
change, if needed. Delphi’s pre-defined com-
ponents, for example, check the ParentColor
property, and if it is True, change the com-
ponent’s Color to match the Parent control’s
new Color.

The messages described here are only some of
the internal component messages that Delphi
defines. Note that not all Windows messages
have corresponding component messages.

If you want your component to intercept,
say, a Wm_Compacting message sent to the
form, you cannot use a component message,
but must set up an application message
hook, which is a completely different topic.

Many of the component messages don’t have
specific argument types, so you can use
TMessage. Others do have specific types, such
as TCmDialogChar for the Cm_DialogChar
message. If a message type is defined, the
descriptions here show the message type.

Some messages require that a result be stored
in the message argument’s Result field. The
value of the result depends on the message.

Windows sends
Wm_WinIniChange
to Application’s
message queue

Application Form Panel Edit

Application
dispatches
Wm_WinIniChange
to main form Form sends

Cm_WinIniChange
to Self

Form sends
Cm_WinIniChange
to all children

Child controls
broadcast
Cm_WinIniChange
to their children

Controls take appropriate
action, e.g. reset
date-time format settings

Application waits
for next message

Figure 1: Sending the Cm_WinIniChange message.

Op Tech
Cm_AppKeyDown Message
The Cm_AppKeyDown message is sent from a control to the
Application object in response to a Cn_KeyDown or
Cn_SysKeyDown event. The control first checks whether the
key event is a shortcut for a pop-up menu. If not, the con-
trol sends the Cm_AppKeyDown event to the application,
and the application handles the message by checking
whether the key-down event is a shortcut key for the main
form. If so, the main form handles the event, and the mes-
sage Result is set to 1. If Result is zero, the main form didn’t
handle the event, which leaves the control that originated
the message to handle the Cn_KeyDown event. In other
words, this message is how Delphi forwards a menu shortcut
key from a child form to the main form.

For this message, a shortcut key is the value of a menu item’s
ShortCut property. When the menu item Caption contains an
ampersand (&), the letter after the ampersand is also a short-
cut key, but it’s treated differently. In this article, the latter
shortcuts are called caption shortcuts and the former are called
accelerator shortcuts.

In Delphi 2, you don’t need to handle or send the
Cm_AppKeyDown message. If a child form has a menu bar, it
handles its own menu shortcuts, and if it doesn’t, it forwards
the shortcut keys to the main form. In Delphi 1, however, you
must handle this message if you want a child form to have its
own menu bar, separate from the main form’s menu bar.
In Delphi 1, a child form forwards its menu shortcut keys to
26 January 1997 Delphi Informant
the main form, even if the child has its own menu. If you
went to the trouble of adding a menu bar to a child form, you
probably want the child form to handle its own menu short-
cut messages. To do this, you must intercept the
Cm_AppKeyDown and the Cm_AppSysCommand messages.
The former handles the accelerator shortcuts and the latter
handles the caption shortcuts. Because the Cm_AppKeyDown
message is sent only to the Application object, you cannot
write a handler for it.

You can, however, write a message hook to intercept the mes-
sage. The message hook can pretend the message has been
handled, thereby preventing the main form’s menu from ever
seeing the shortcut key. That lets each form handle its own
key stroke events. Figure 2 shows one way to hook the
Cm_AppKeyDown and Cm_AppSysCommand messages to pre-
vent the main form from receiving them.

The Cm_AppKeyDown message, like other key stroke messages,
uses the TWmKeyDown message type. The CharCode field is
the virtual key code, and the KeyData field holds the modifier
keys, repeat count, and other key data. Figure 3 shows a
description of the constituent parts of the KeyData field.

Cm_AppSysCommand Message
The Cm_AppSysCommand message is sent in response to a
Wm_SysCommand message, but only when the sending form
is not the main form, the form is not minimized, the com-
mand is Sc_KeyMenu, and the key is not a space or a hyphen

Figure 2: How to intercept and discard the Cm_AppKeyDown
and Cm_AppSysCommand events.

Figure 3: TKeyData record for interpreting key event data.

function TMainForm.AppKeyDownHook(var Msg: TMessage):
Boolean;
begin

case Msg.Msg of
Cm_AppkeyDown : Result := True;
Cm_AppSysCommand : Result := True;

else
Result := False;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Application.HookMainWindow(AppKeyDownHook)
end;

type
TKeyDataFlag = (kdExtended, kdUnused1, kdUnused2,

kdInternal1, kdInternal2, kdAltDown,
kdWasDown, kdReleased);

TKeyDataFlags = set of TKeyDataFlag;
TKeyData = record

RepeatCount: Word;
ScanCode: Byte;
Flags: TKeyDataFlags;

end;

Op Tech

Figure 4: TCmButtonPressed type, for use when handling
Cm_ButtonPressed events.

type
TCmButtonPressed = record

Msg: Cardinal;
GroupIndex: Integer;
Sender: TSpeedButton;
Result: LongInt;

end;
(-). In other words, this message is sent when the user presses
a caption shortcut key.

In Delphi 1, you must intercept this message when you want
a child form to have its own menu bar, separate from the
menu of the main form. Figure 2 shows how to do this.
Otherwise, there is no reason to handle or send this message.

In Delphi 1, a form sends the Cm_AppSysCommand to the
application, which forwards it to the main menu. The mes-
sage type is TWmSysCommand. In Delphi 2, a control first
sends the Cm_AppSysCommand message to its parent form;
the parent form forwards it to the application only if the
form is an MDI child, has no menu, or has a main menu
whose AutoMerge property is set to True. This lets a child
with its own menu handle the shortcut key. The lParam
argument is a pointer to the original message’s TMessage
record. The parent form passes this TMessage record to the
Application object, which forwards it to the main form.

Cm_ButtonPressed Message
A speed button sends this message to its siblings to enforce the
group semantics; that is, to ensure that only one button in a
group is pressed at any given time. When a speed button is
pressed, it broadcasts the Cm_ButtonPressed message to all its
sibling controls (not just the TSpeedButton components).

By default, TSpeedButton components handle this message so
that all buttons in the same group can set themselves to the
Up state. The message arguments are the group index
27 January 1997 Delphi Informant
(wParam) and the sender button (lParam), but no message
type is defined. For your convenience, Figure 4 shows the
TCmButtonPressed type, which you can use when handling
this message.

If you derive a new class from TSpeedButton, you can handle
this message if you want to implement different behavior
when a speed button is pressed. You can also handle this event
for non–speed button components, perhaps to reflect in a dif-
ferent manner which speed button is currently depressed.

The result is ignored for this message.

Cm_ColorChanged Message
When a control’s Color property changes, it sends the
Cm_ColorChanged message to itself. The default message
handler invalidates the control, so Windows will repaint it.
A control with children broadcasts the
Cm_ParentColorChanged message to its children so they can
respond to the color change, if needed.

TWinControl also copies the color to its Brush.Color prop-
erty, and TForm copies the Color to its Canvas.Brush.Color
property. If you derive a class from a different base class
(such as TGraphicControl) that publishes the Color proper-
ty, you might want to handle the Cm_ColorChanged mes-
sage. Remember to call the inherited message handler to
ensure the control is refreshed and all child controls are
properly notified.

Because this message takes no arguments and returns no
result, you should use TWmNoParams for the message type.

Cm_ControlListChange Message
A window control sends the Cm_ControlListChange mes-
sage to itself when its control list changes; that is, when a
control is added or removed. A TDBCtrlPanel component
updates its database links when it receives this message.

The Cm_ControlListChange message is sent before a control is
added to the list, so a message handler can examine the con-
trol and raise an exception to prevent it from being added.
When a control is removed, the Cm_ControlListChange mes-
sage is sent after the control is removed.

The message type is TWmControlListChange. The Control
field refers to the control being added or removed. The
Inserting field is True when the control is to be added and
False when the control is being removed.

Op Tech

Figure 5: Initializing an Application object in a DLL.

Figure 6: Initializing a DLL from the main application.

library Demo;

uses WinTypes, Forms;

{ The application passes its Application.Handle to
Initialize, so the DLL can communicate with the main
application. }

procedure Initialize(Handle: HWnd); export;
begin

Application.Handle := Handle;
end;

...

exports
Initialize;

end.

uses Forms;

procedure Initialize(Handle: Hwnd); external DemoDLL;

...

Initialize(Application.Handle);

...
The Cm_ControlListChange message and the TDBCtrlPanel
component are not included in Delphi 1.

Cm_Ctl3DChanged Message
The Cm_Ctl3DChanged message is similar to
Cm_ColorChanged, but corresponds to the Ctl3D property.

Cm_CursorChanged Message
When a control’s Cursor property changes, it sends the
Cm_CursorChanged message to itself. The default implementa-
tion, in TWinControl, checks whether the cursor is currently
over the control, and if so, immediately changes the cursor. You
probably don’t need to change this behavior for any Windows
control. For a component derived from TGraphicControl, how-
ever, you might decide to implement similar behavior.

This message takes no arguments and returns no result, so
you should use TWmNoParams as the message type.

Cm_DesignHitTest Message
As the name implies, Delphi sends the Cm_DesignHitTest
message to a component at design time to determine whether
the cursor position is in a design area. If your component
needs to handle mouse events at design time, you can set the
Result to a non-zero value.

For example, the various grid components handle column
and row resize events at design time. When the mouse is over
a resize bar, the grid component sets the Result to 1 in
response to a Cm_DesignHitTest event. This tells Delphi to
pass mouse events to the component, rather than handling
these events itself (for resizing and moving components, and
for using the component editor).

In most cases, your component doesn’t need to handle this mes-
sage. If you’re writing a component that must respond to mouse
events at design time, you can supply a message handler. If you
decide that the mouse cursor is not in a design area, call the
inherited message handler. The inherited handler checks for
child controls that might need to handle this message.

The message type is TCmDesignHitTest. The cursor position
is given by the XPos and YPos fields, or by the Pos field, which
is of type TPoint. The Keys field gives the state of the V
and C modifiers, and tells you which mouse button is
pressed, in the same manner as TWmMouseMove (as a bit
mask). Call the KeysToShiftState function to convert this bit
mask into a TShiftState set, which is easier to use.

Cm_DialogHandle Message
In Delphi 2, an Application object in a DLL sends the
Cm_DialogHandle message to its counterpart in the applica-
tion, which responds by setting or returning its
DialogHandle property. When wParam equals 1, the
Application object returns the current value of
DialogHandle; otherwise, it sets DialogHandle to the value
of the lParam field. This lets Delphi keep a single
DialogHandle for an application and all DLLs.
28 January 1997 Delphi Informant
The DialogHandle property lets you use non-Delphi mode-
less dialog boxes with Delphi. You assign the window handle
of the dialog box to the application’s DialogHandle property,
and the Application forwards dialog messages to the dialog
box. In particular, the TFindDialog and TReplaceDialog com-
ponents rely on the DialogHandle property.

When using the Application object in a DLL, be sure to
assign the main application’s handle to the
Application.Handle property. This allows the Application
object in the DLL to forward the Cm_DialogHandle mes-
sage to the Application object in the main application.
Figure 5 shows an example of an Initialize procedure in a
DLL, which takes a window handle as an argument,
assigning it to Application.Handle.

To use the DLL’s Initialize procedure, you must pass
Application.Handle as its argument. This is shown in Figure 6.

Because the Cm_DialogHandle message is used internally
by the TApplication class, there is no reason for you to send
or handle it. Instead, use the Application.DialogHandle
property. This message is defined only in Delphi 2.

Cm_Drag Message
The Cm_Drag message communicates drag events between
controls. The DragMessage field specifies what kind of drag
event is taking place (Enter, Leave, Move, Drop, Cancel, or
Find Target), and the DragRec field points to a TDragRec
record, which contains a reference to the Source and Target
objects and the cursor position.

Op Tech

Figure 7: TCmDragFindTarget type, for use when handling
Cm_Drag events.

type
TCmDragFindTarget = record

Msg: Cardinal;
Source: TObject;
Unused: LongInt;
Result: TControl;

end;
The TCmDrag message type declares the DragMessage and
DragRec fields. The Cm_Drag message is defined only in
Delphi 2. In Delphi 1, you can override the DragDrop and
DragCanceled methods, but to customize any other drag-and-
drop behavior, you must handle the mouse events explicitly.
Borland has addressed this limitation by adding the
Cm_Drag message and by adding virtual methods to
TControl in Delphi 2.

By inheriting from the standard Delphi components, your
components automatically inherit the proper behavior for the
Cm_Drag message. In most cases, you can customize any spe-
cific behavior by overriding the drag-and-drop methods:
DragOver, DragCanceled, DoStartDrag, DoEndDrag, and
DragDrop. In rare cases when you need greater control over
drag events, you can override the Cm_Drag message handler.
The following sections describe the appropriate response for
each drag message.

dmDragCancel Drag Message. If the user finishes a drag-
and-drop operation by dropping on a target that does not
accept the drag source, the intended target receives a
Cm_Drag message with the dmDragCancel drag message. The
cursor position in the drag record is set to (0,0). The default
behavior is to do nothing when receiving the dmDragCancel
drag message. This message returns no result.

dmDragDrop Drag Message. When the intended target of a
drop operation accepts the drop, it receives a Cm_Drag
message with the dmDragDrop drag message. The default
behavior, upon receiving the dmDragDrop message, is to call
the DragDrop method. The preferred way to handle a
dmDragDrop message is to override the DragDrop method.
If you do so, remember to call the inherited method, which
calls the OnDragDrop event handler. This message returns
no result.

dmDragEnter Drag Message. During a drag operation, when
the mouse cursor enters a control, the control receives a
Cm_Drag message with the dmDragEnter drag message. The
default response is to treat the dmDragEnter message as a normal
dmDragMove message, i.e. to call the DragOver method. The
preferred way to handle the dmDragEnter message is to override
the DragOver method. If you do so, remember to call the inher-
ited method, which calls the OnDragOver event handler.

The result is non-zero if the target accepts the drag source, or
zero if rejected.

dmDragLeave Drag Message. When the mouse cursor leaves
a control during a drag operation, the control receives a
Cm_Drag message with the dmDragLeave drag message. The
default response is to treat the dmDragLeave message as a
normal dmDragMove message, i.e. to call the DragOver
method. The preferred way to handle the dmDragLeave mes-
sage is to override the DragOver method. If you do so,
remember to call the inherited method, which calls the
OnDragOver event handler.
29 January 1997 Delphi Informant
The result is non-zero if the target accepts the drag source, or
zero if rejected.

dmDragMove Drag Message. During a drag operation,
when the mouse cursor moves over a control, the control
receives a Cm_Drag message with the dmDragMove drag
message. The default response is to call the DragOver
method. The preferred way to handle the dmDragMove
message is to override the DragOver method. If you do so,
remember to call the inherited method, which calls the
OnDragOver event handler.

The result is non-zero if the target accepts the drag source, or
zero if rejected.

dmFindTarget Drag Message. When the mouse moves during
a drag operation, Delphi must identify the component under
the mouse cursor. It starts with the window control under the
mouse cursor, and sends it the Cm_Drag message with the
dmFindTarget drag message. The control responds by return-
ing an object reference, i.e. the component that is the drag
target. Your custom component can handle this message by
forwarding drag operations to a different control or by return-
ing nil to refuse the drag operation. In most cases, however,
you will want to keep the default behavior. When setting the
result, there is no convenient message type defined, but you
can use TCmDragFindTarget, as shown in Figure 7.
Cm_EnabledChanged Message
When a control’s Enabled property changes, it sends the
Cm_EnabledChanged message to itself. Upon receiving this
message, most components invalidate themselves to force a
repaint. A Windows control enables or disables its window
and gives up the input focus when disabled. If you write a
component that needs to do something different when the
Enabled property changes value, then you can handle this
message. Remember to call the inherited event handler.

This message takes no arguments and returns no result, so
you should use TWmNoParams as the message type.

Cm_FocusChanged Message
After changing the focused control, a form sends the
Cm_FocusChanged message to itself, which broadcasts the mes-
sage to all child components. The control that received the
input focus is stored in the Sender parameter, which is of type
TWinControl. The message type is TCmFocusChanged, which
declares the Sender field. The message handler returns no result.

Op Tech

Figure 8: TCmGetDataLink type, for use when handling
Cm_GetDataLink events.

type
TCmGetDataLink = record

Msg: Cardinal;
Unused1: Integer;
Unused2: LongInt;
Result: TFieldDataLink;

end;

Figure 9: TCmHintShow type, for use when handling
Cm_HintShow events.

type
TCmHintShow = record

Msg: Cardinal;
Unused: Integer;
HintInfo: PHintInfo;
Result: LongBool;

end;
Most likely, your component would override the DoEnter and
DoExit methods to handle focus changes, but there might be
situations in which you want your component to reflect focus
changes that occur elsewhere on the form. In that case, you
can handle the Cm_FocusChanged message. Remember to call
the inherited method to ensure that child components are
notified of the focus change, too.

Cm_FontChange Message
When a form receives the Wm_FontChange message, it sends
Cm_FontChange to itself. Upon receiving Cm_FontChange, a
window broadcasts the message to its children. A control
handles Cm_FontChange by updating its font and broadcast-
ing the Cm_ParentFontChanged message. There is rarely any
reason to handle this message yourself, unless your compo-
nent manages a list of installed fonts.

Note that Cm_FontChange is very different from
Cm_FontChanged. Windows sends the Wm_FontChange mes-
sage when the list of installed fonts changes, usually because
the user installed or removed a font.

This message takes no arguments and returns no result, so
you should use the TWmNoParams message type.

Cm_FontChanged Message
The Cm_FontChanged message is similar to
Cm_ColorChanged, but corresponds to the Font property.
Notice the difference between Cm_FontChanged and
Cm_FontChange.

Cm_GetDataLink Message
When a TDBCtrlPanel updates its data links, it sends the
Cm_GetDataLink message to each of its child database con-
trols. A database component, in response to this message,
returns a reference to its data link object.

Although there is no class defined for this message, you
can use the TCmGetDataLink record shown in Figure 8.
Notice that the Result field is not an integer, but a
TFieldDataLink object. The wParam and lParam fields are
not used. The Cm_GetDataLink message is specific to
Delphi 2.

Cm_HintShow Message
In Delphi 2, the Application object sends the
Cm_HintShow message to a control before displaying its
hint. If the control returns a True response, then the appli-
cation doesn’t display the hint window. The default
response is to return a False result, thereby letting the
application display the hint window. Note that if the con-
trol’s ShowHint property is False, the application doesn’t
attempt to show a hint, and the control never receives the
Cm_HintShow message.

Although there is no message type, Figure 9 shows the
TCmHintShow record, which you can use. The HintInfo
field points to a THintInfo record, which contains the
30 January 1997 Delphi Informant
position, size, and color of the hint window. When
responding to the Cm_HintShow message, the control can
change any of these fields.

Cm_InvokeHelp Message
The Cm_InvokeHelp message is sent by an Application
object in a DLL when it has no associated Help file. The
main application handles this message by calling its
InvokeHelp method, which asks Windows to open a Help
file. In other words, Delphi uses the Cm_InvokeHelp mes-
sage to forward Help requests from a DLL to an applica-
tion. The wParam and lParam arguments are passed to
WinHelp as the Command and Data arguments. No results
are returned, so you can use TMessage for the message type.

When using the Application object in a DLL, be sure to
assign the main application’s handle to the Application.Handle
property. This allows the Application object in the DLL to
forward the Cm_InvokeHelp message to the Application object
in the main application, as illustrated in Figures 5 and 6.

Ordinarily, your components, applications, and libraries don’t
need to send or handle this message, because you can call the
TApplication.InvokeHelp method.

Cm_IsToolControl Message
In Delphi 2, an OLE container sends the Cm_IsToolControl
message to a control to learn whether it’s a toolbar or similar
control that must remain when an OLE object is activated in
place. This message is sent only to controls whose Align prop-
erty is alLeft, alRight, alTop, or alBottom. If the control returns
a zero result, then it remains; if a non-zero result is returned,
the control is hidden while the OLE object is active.

By default, a control returns a zero result. A TCustomPanel
object returns a non-zero result if its Locked property is False.
In other words, most aligned controls remain visible during
an OLE in-place activation, but to keep a panel visible, you
must set its Locked property to True.

Figure 10: TCmIsToolControl type, for use when handling
Cm_IsToolControl events.

type
TCmIsToolControl = record

Msg: Cardinal;
Unused1: Integer;
Unused2: LongInt;
Result: LongBool;

end;

Figure 11: TCmMouseEnter type, for use when handling
Cm_MouseEnter events.

type
TCmMouseEnter = record

Msg: Cardinal;
Unused: Integer;
Sender: TControl;
Result: LongInt;

end;
TCmMouseLeave = TCmMouseEnter;

Op Tech
There is no message type defined for this message. You can
use the TCmIsToolControl record, shown in Figure 10. This
message is not defined for Delphi 1.

Cm_MouseEnter Message
The Application object sends the Cm_MouseEnter message to a
control when the mouse enters that control’s bounds. If a con-
trol is capturing all mouse input, then the Cm_MouseEnter
message is sent only when the mouse enters the capture con-
trol. The Application object doesn’t send Cm_MouseEnter
unless it has no other messages to process, so your component
must not rely on receiving this message in a timely manner.

Delphi controls do not handle this message, except to for-
ward it to the parent control. The lParam argument is the
message sender, or nil if the sender is the Application object.
This message returns no result. For a diagram of the
Cm_MouseEnter message, see Cm_MouseLeave.
There is no message type, so you can use the TCmMouseEnter
type shown in Figure 11.

Cm_MouseLeave Message
The Application object sends the Cm_MouseLeave message
to a control when the mouse leaves that control’s bounds.
If a control is capturing all mouse input, then the
Cm_MouseLeave message is sent only when the mouse
leaves the capture control. The Application object doesn’t
send Cm_MouseLeave unless it
has no other messages to
process, so your component
must not rely on receiving this
message in a timely manner.

Delphi controls do not handle
this message except to forward it
to the parent control. The
lParam argument is the message
sender, or nil if the sender is the
Application object. This message

Figure 12: Moving the
mouse on a form.
31 January 1997 Delphi Informant
returns no result. Figure 12 depicts a simple form with the
mouse moving across it. Figure 13 shows the resulting event
diagram.

There is no message type, but you can declare
TCmMouseLeave to be the same as TCmMouseEnter, as
shown in Figure 11.

Cm_ParentColorChanged Message
When a control’s Color property changes, it notifies its
child controls by sending the Cm_ParentColorChanged mes-
sage. When a control’s ParentColor property becomes True,
it sends the Cm_ParentColorChanged message to itself to
update its Color property to match that of its parent. Upon
receiving this message, a control checks its ParentColor
property, and if True, sets its Color property to match that
of its Parent. When a component is added to a form,
Delphi sends this message to ensure the component’s Color
property is initialized correctly.

In most cases, you don’t need to handle or send this mes-
sage, because Delphi does so automatically. This message
takes no arguments and returns no result, so you should
use TWmNoParams as the message type.

Cm_ParentCtl3DChanged Message
The Cm_ParentCtl3DChanged message is similar to
Cm_ParentColorChanged, but corresponds to the Ctl3D property.

Cm_ParentFontChanged Message
The Cm_ParentFontChanged message is similar to
Cm_ParentColorChanged, but corresponds to the Font property.

Cm_ParentShowHintChanged Message
The Cm_ParentShowHintChanged message is similar to
Cm_ParentColorChanged, but corresponds to the ShowHint
property.

Cm_Release Message
A form’s Release method posts the Cm_Release message to
itself. When the form receives this message, it frees itself by
calling the Free method. Note that by posting the message
instead of sending it, the form ensures all pending messages
will be handled properly. This ensures an orderly cleanup
before closing the window.

There is little reason to handle this message. Instead, you
can write an OnClose or OnDestroy event handler, or over-
ride the form’s destructor, whichever is more convenient.
There is also no reason to send this message. Instead, call
the Release method.

This message takes no arguments and returns no result, so
you should use TWmNoParams as the message type.

Cm_ShowHintChanged Message
The Cm_ShowHintChanged message is similar to
Cm_ColorChanged, but corresponds to the ShowHint property.

32 January 1997 Delphi Informant

Application OK Button Cancel Button Panel

Application sends
Cm_MouseEnter
to Cancel Button

Form

Cancel Button forwards
Cm_MouseEnter
to Panel Panel forwards

Cm_MouseEnter
to Form

Panel forwards
Cm_MouseLeave
to Form

Panel forwards
Cm_MouseEnter
to Form

Application sends
Cm_MouseLeave
to OK Button

Application sends
Cm_MouseEnter
to OK Button

Panel forwards
Cm_MouseLeave
to Form

Application sends
Cm_MouseLeave
to Panel

User moves mouse
over Cancel Button
(Wm_MouseMove
not shown)

Application sends
Cm_MouseEnter
to Panel

Panel forwards
Cm_MouseEnter
to Parent (Form)

User moves mouse
over Panel

Windows sends Wm_MouseMove to Panel

User moves mouse
over the OK Button

OK Button forwards
Cm_MouseLeave
to Panel

OK Button forwards
Cm_MouseEnter

Windows sends Wm_MouseMove toOK Button

Figure 13: Event diagram for Cm_MouseEnter and Cm_MouseLeave.

to Panel

Op Tech

-

s

.

ll

Ray Lischner is a software author and consultant for Tempest Software
(http://www.tempest-sw.com). His current focus is object technology, especially in
Delphi, Java, and Smalltalk. You can reach him at delphi@tempest-sw.com.

Op Tech
Cm_SysColorChange Message
When a form receives a Wm_SysColorChange message, it
sends the Cm_SysColorChange message to itself and clears
the graphics caches (pens, brushes, and canvases). The
default behavior of a control when it receives the
Cm_SysColorChange message is to broadcast the message to
its children.

Remember that Windows sends the Wm_SysColorChange
message when the user changes the system color scheme.
Every form repaints itself with the new color scheme, but
if your component saves any color information (such as a
bitmap background), you should handle this message to
refresh your component’s information.

This message takes no arguments and returns no result, but
the message type TCmSysColorChange is defined, which is the
same as TWmNoParams.

Cm_TextChanged Message
When a component’s Text or Caption property changes, it
sends the Cm_TextChanged message to itself. Many con-
trols invalidate themselves upon receiving this message. If
you derive your component from a custom component,
you can let the base class handle this message.

However, if you create a new component that publishes the
Text or Caption property, you might need to handle this
message to call Invalidate. If your component takes addition-
al measures when its text changes, you can write an event
handler, but remember to call the inherited handler, too.

This messages takes no arguments and returns no result,
so you should use TWmNoParams as the message type.

Cm_TimeChange Message
When a form receives a Wm_TimeChange message, it sends
the Cm_TimeChange message to itself. The default behavior
of a control when it receives the Cm_TimeChange message is
to broadcast the message to its children. If your component
uses the system date or time, you must handle this message.

This message takes no arguments and returns no result, but
the message type TWmTimeChange is defined, which is the
same as TWmNoParams.

Cm_WinIniChange Message
When a form receives a Wm_WinIniChange message, it
sends Cm_WinIniChange to itself. The default behavior of
a control when it receives the Cm_WinIniChange message
33 January 1997 Delphi Informant
is to broadcast the message to its children. Your compo-
nent can handle this message if it needs to respond to
changes in the user’s environment.

The message type is TWmWinIniChange, which defines
the Section field as a PChar variable. The Section is the
name of the section that changed in WIN.INI, or nil if
more than one section changed.

Conclusion
In this article, you learned about some of the messages that
Delphi components send to each other. These messages are
an integral part of the VCL; when you write custom compo-
nents, you need to be aware of these messages so you know
which ones the component must handle and which messages
it must send.

In many cases, your component inherits the correct behav
ior from the standard Delphi control classes, such as
TCustomControl. There are times, however, when a com-
ponent must implement non-standard or uncommon
behavior. For example, a clock component might need to
be notified when the system time changes. Windows send
the Wm_TimeChange message to the form, and the form
broadcasts the Cm_TimeChange message to all its controls
Thus, when you implement a clock component, you must
know how to handle the Cm_TimeChange message, which
was covered in this article.

Some messages are sent to or from the Application object,
such as the Cm_AppKeyDown message. In Delphi 1, this
message is especially important when you are writing an
application where each form has its own menu bar. Unless
you handle this and the Cm_AppSysCommand messages, a
keyboard shortcuts are forwarded to the main form’s menu
bar, so the individual forms can’t implement their own
menu bars correctly. You learned how to intercept these
messages, so any form can have its own menu bar. ∆

This article is adapted from material for Ray Lischner’s
Secrets of Delphi 2 [Waite Group Press, 1996], available
for $49.99 from your local bookstore or by calling (800)
428-5331. Secrets of Delphi 2 contains a description of
every internal VCL message.

34 January 1997 Delphi Informant

In Development
Delphi 1 / Delphi 2

By Mark Ostroff

What’s in a Name?
Naming Conventions for Delphi Projects

Figure 1: Lack of a workable nam
objects in the Object Inspector.
Delphi’s focus on RAD development enables a developer to drop a few
components onto a form, write a few lines of code, and have a work-

ing prototype of the application with little or no effort.
In fact, Delphi might make it too easy.
Soon you can have a bewildering number
of components in your application with
useful names such as Edit1, Query2, and
DataSource5. Delphi’s default object names
are only good as place holders until you
develop a workable naming convention.

Why Design a Naming Convention?
Without some forethought, the list of com-
ponent names you choose could become as
confusing as the names Delphi assigns.
Many of us begin naming our Delphi
objects based on their functionality —
names such as ExitButton, DeptField, and
DateSpin.

This convention seems to make sense for a
while. However, as you use your objects, it
soon becomes apparent that you need a bet-
ter way of organizing their names.

Organization becomes important. Delphi’s
Object Inspector lists your components in
alphabetical order. This feature is only use-
ful in large projects when you have an
ing convention causes an unorganized list of
effective naming system. The larger the
number of objects in your project, the
more important the naming of those
objects becomes. Otherwise, you’ll have
more and more difficulty finding the cor-
rect object to select in the Object
Inspector’s pull-down lists. A workable
naming convention is also important when
you start working on a project with a team
of developers, because you might not be
the only developer creating object names.

Figure 1 shows the result of creating a new
project using the SDIApp template from
Delphi’s Object Repository. Notice that no
apparent organization exists for this list of
objects. Because the names are ambiguous
and inconsistent, it’s hard to tell which object
some of the names refer to.

Do FileMenu and MainMenu refer to sepa-
rate objects of type TMainMenu? Do
ExitItem and FileMenu both refer to
TMenuItem objects? These aren’t idle ques-
tions. As your projects grow, you will
remember what type of component you
want to work with, but you might not
remember its name.

Side-effects of poor object naming. The
lack of a good object naming convention
affects more than selecting objects from the
Object Inspector. Delphi automatically
names the event handlers that respond to
user events. These method names are
derived from the name of the target object

Figure 2: Side-effects of assigning an existing method to the
OnClick event of another object.

In Development
for which they are defined. Therefore, disorganized object
names also make it difficult to select the proper event han-
dler to reuse in other objects.

Figure 2 shows what happens when you try to assign an
existing method to the OnClick event of another object.
The naming inconsistency of the objects carries over to the
naming of the event handlers. While FormCreate is fairly
clear, what object association does the ShowHint method
have? You’d have to look at the code to find out.

Why doesn’t a name such as ExitButton work? Most peo-
ple start by using names that begin with the functionality
and end with the component type. This convention elimi-
nates event handler naming inconsistencies. Unfortunately,
it doesn’t help when you’re looking for an object of a cer-
tain type, but can’t remember what abbreviation you used
for its functionality. You need to use something that lever-
ages the Object Inspector’s auto-sorting of names.

A System That Works
What we need is a naming convention that follows the nat-
ural thought processes of the human mind, and then takes
advantage of Delphi’s features to make even large projects
easier to work with. Because most people have trouble
remembering names, but not types of names, the object
naming convention should result in a list that is sorted by
type, then description. We also want some visual method
whereby the developer can easily focus on the functional
description after the desired type has been found.

Pre-pending the object type. Getting Delphi to sort the
object names by type is easy. Simply place the type first —
rather than last — in the object’s name. For example, a
collection of buttons might be named btnClose,
btnDirChange, and btnFileOpen. The pre-pending of the
object type places all objects of the same type along with
their object-related event handlers in any Object Inspector
pull-down list. The functional descriptions that follow the
35 January 1997 Delphi Informant
type abbreviation make it
clear what action each button
is meant to perform.

This type abbreviation prefix
scheme is actually used in
Delphi, and all enumerated
types use this prefix conven-
tion. For example, Figure 3
shows the use of a two-letter prefix to designate legal val-
ues for color selections.

Delphi provides over 100 types of components. The use of a
three-letter prefix for object names seems to provide enough
information for meaningful type abbreviations.

Why case is important. The above examples all use a
lower-case object type abbreviation. The type abbreviation
is followed by the object’s functional description in proper
case (i.e. the first letter of each word or phrase is capital-
ized). This particular case selection is deliberate. Once
again, it follows the convention used within Delphi.

The initial goal of sorting object names is achieved by
placing the type abbreviation first. The use of lower-case
followed by proper-case enables the developer to ignore
the type and focus on the object’s description. This case
organization helps when selecting a specific object from a
grouped list of similar objects.

The type prefixes. The table in Figure 4 is a suggested list of
object type prefixes you can apply to your object names. It
covers all the components that ship with Delphi. This list is,
of course, not cast in concrete. Adjust the prefixes to suit
your tastes and add prefixes for new object types that you cre-
ate or purchase. The only hard and fast rule is to keep your
object type prefixes consistent.

Explaining Some of the Suggestions
Some of the distinctions between the prefixes listed may
seem a bit arbitrary. Why lump some components under
the same prefix, while others are out on their own? In gen-
eral, components used in similar ways are placed under the
same prefix. Both the Edit and DBEdit components are
employed in much the same way, so both use the edt pre-
fix. The Memo, DBMemo, and RichEdit objects also have
similar functions, yet they differ quite a bit from Edit
objects. So they get their own prefix, mmo.

Some of the more “colorful” prefixes were created to avoid
collisions. The QuickReport components are an example.
Sometimes you must be imaginative to create a set of unique
three-letter combinations.

Component types you don’t often use might be good candi-
dates for prefix consolidation. You could lump all the

Figure 3: Use of two-letter
prefixes to designate legal
values for color schemes.

Prefix Object Type

bar ProgressBar, StatusBar, TrackBar

bat BatchMove

btn Button, BitBtn, SpeedButton

bvl Bevel

cal Calendar

cbx ComboBox, DBComboBox

chk CheckBox, DBCheckBox

dbs Database

dcc DDEClientConv

dci DDEClientItem

dir DirectoryOutline

dlg Dialogs (Open, Save, Font, Color, Print,

PrinterSetup, Find, Replace)

drv DriveComboBox

dsc DDEServerConv

dsi DDEServerItem

dtm DataModule

dts DataSource

edt Edit, DBEdit, SpinEdit

fcb FilterComboBox

frm Form

ftp FTP (Internet File Transfer Protocol)

gge Gauge

grd ColorGrid, DrawGrid, DBGrid, DBControlGrid,

StringGrid

grf ChartFX, VCFirstImpression, GraphicsServer

grp GroupBox

hdr HeaderControl, Header

hot Hotkey

htm HTML (Internet Web Browser)

htt HTTP (Send, Receive or Search HTML Documents

ibe IBEventAlerter

img Image, DBImage

lbl Label, DBText

lst ListBox, DBListBox, DirectoryListBox, FileListBox,

ImageList

luc DBLookupComboBox, DBLookupCombo

lul DBLookupListBox, DBLookupList

lvw ListView

med MediaPlayer

mmo Memo, DBMemo, RichEdit

mni MenuItem

Prefix Object Type

mnu MainMenu

msk MaskEdit

nav DBNavigator

nbk Notebook, TabbedNotebook

nnt NNTP (Internet Network Newsgroup Access)

ole OLEContainer

out Outline

pbx PaintBox

pge PageControl

pnl Panel

pop POP (Internet Post Office Protocol to receive E-Mail)

pum PopUpMenu

qrb QRBand

qrc QRCalc

qrd QRSysData

qrg QRGroup

qrl QRDetailLink

qrm QRMemo

qrp QuickReport

qrv QRPreview

qrs QRShape

qrt QRLabel, QRDBText

qry Query

rad RadioButton

rgp RadioGroup, DBRadioGroup

rpt Report

sbr Scrollbar

sbx Scrollbox

shp Shape

sht VCFormulaOne

smt SMTP (Internet Simple Mail Transport)

spl VCSpeller

spn SpinButton, UpDown

ssn Session

stp StoredProc

tab TabControl, Tabset

tbl Table

tcp TCP (Internet Data Exchange … like a telephone)

tmr Timer

tre TreeView

udp UDP (Internet Data Broadcast … like a radio)

ups UpdateSQL

Figure 4: Suggested object type prefixes.

In Development
Internet Solution Pack components under the prefix web. If
you rarely use DDE, you might want to use the prefix dde
for all four DDE component types.

Some Examples
The effects on the ease of development are best seen in an
example. In Figure 2, we saw that poor object naming can
make method selection difficult.
36 January 1997 Delphi Informant
Data object naming. Look at the DataModule displayed in
Figure 5. Assigning a DataSet to the dtsContacts DataSource
object is simplified by this naming convention. It’s easy to see
that this DataModule contains a number of Query, Stored
Procedure, and Table objects.

Menu object naming. Note that this DataModule also con-
tains an application standard PopUpMenu named

Figure 5 (Top): An example of a workable naming convention.
Figure 6 (Bottom): Easing method selection.

In Development

Mark Ostroff has over 18 years experience in the computer industry. He began by
programming minicomputer medical research data acquisition systems, device
interfaces, and process control database systems in a variety of 3GL computer lan-
guages. He then moved to PCs using dBASE and Clipper to create systems for the
US Navy, as well as for IBM’s COS Division. He also volunteered to help create the
original Paradox-based “InTouch System” for the Friends of the Vietnam Veterans’
Memorial. Mark has worked for Borland for the past six years as a Systems
Engineer, specializing in database applications.
pumStdPopUp. Because PopUpMenus are more amenable to
reuse, it makes sense to include standard ones in a
DataModule.

It also makes sense to give them their own type prefix.
PopUpMenus are used differently than MainMenus, and
their type prefix should reflect this, rather than lumping
them together with other menus.

Menus also have unique naming convention requirements.
Typically you’ll want to perform one set of actions on a
menu object itself. You’ll want to execute another kind of
logic in response to events that occur for MenuItems with-
in that menu object.

Thus, the prefix list in Figure 4 suggests mnu and pum for
MainMenu and PopUpMenu objects, respectively, and mni
for use with MenuItems themselves. The clarity this adds
to selecting event handlers is shown in Figure 6.
37 January 1997 Delphi Informant
What about file names? File naming conventions weren’t
much of an issue in Delphi 1. Nearly every .PAS file was a
form. However, Delphi 2 added the ability to create
DataModules.

At a glance, this issue seems
easy to resolve. Simply use
the same three-letter prefixes
you used for Form and
DataModule objects.
However, Delphi doesn’t allow
you to save a unit with the same name as an object within
that unit.

You only need two designations for file names, one for Forms
and another for DataModules. Simply use a two-letter prefix
when you save the file (see Figure 7).

Conclusion
Try this naming convention in your next project. After an
adjustment period, I think you’ll find your Delphi develop-
ment will proceed even more rapidly than before. As your
project grows, you’ll also realize more efficiencies.

This article builds on the work of two groups. The initial
effort was started by Borland. Many of the concepts and
naming conventions covered here are used by Borland for
developing its in-house applications.

Additional work was performed by the Delphi Study Group,
sponsored by Informant Communications Group on its
CompuServe forum. Additional thanks go to Tom Arnold
and the other members of the group for consolidating much
of the discussion about type prefixes. ∆

Figure 7: File type prefixes.

Prefix File Type

fm Form

dm DataModule

38 January 1997 Delphi Informant

Delphi at Work
Delphi / Object Pascal

By David Faulkner

TBarCode
A Custom Bar Code Component

Figure 1: The TBarCode compon
Ubiquitous, even annoying, bar codes are nevertheless extremely
handy, and can relieve much data entry tedium. Their Delphi imple-

mentation was therefore just a matter of time. And — well — it’s time!
This article presents TBarCode, a compo-
nent that displays bar codes which can be
read into a computer using an optical scan-
ner as the input device. TBarCode imple-
ments the Code 39 specification, but you
should be able to extend it to display any
bar code format. Figure 1 shows TBarCode
in action.

Before creating this component, I experi-
mented with bar code fonts that display
coded symbols for each character, i.e. set-
ting TLabel ’s Font property to a bar code
font effectively creates a bar code. While
this approach worked, it meant I had to
worry about licensing the font and
installing it on users’ machines. This was
ent at work.
potentially expensive, and a lot of trouble
compared to the ease with which TBarCode
was assembled.

The Specification
Code 39 maps each of a set of pre-defined
printable characters to a set of nine bars. A
bar can be wide or narrow, black or white,
meaning both the black bars and the spaces
between are meaningful.

There’s no specific width assigned to a bar;
instead, only the ratio of the bars is speci-
fied. The wide bars must be 2.2 to 3.0
times as wide as the narrow bars. The larg-
er ratio is usually favored, as it results in
fewer read errors.

Code 39 supports 44 printable characters:
upper-case letters A through Z
the numbers 1 through 9
the symbols -, ., $, /, +, %, and the
blank character

(The * character is also supported, but it’s
used as a start and stop character, and cannot
be used as a data item.)

Each character is assigned a unique series of
nine bars. The first and last bar are always
black; the remaining bars alternate between
black and white. For example, the series for
“A” is WNNNNWNNW; that is, a wide black bar
followed by a narrow white bar followed by a
narrow black bar, etc. Figure 2 shows the bar
code for this character.

Figure 2: The series of bars for the letter “A”.

Delphi at Work
The series for the rest of the character set is in the source
code listing as BarCodeTable. Every character is encoded
with nine bars, three of which are wide, thus the name
Code 39 (Code 3 of 9).

A white space is inserted between each character so the reader
can distinguish the end of one character and the beginning of
another. The white space’s width isn’t specified, but it’s gener-
ally set to the width of a narrow bar.

A legal Code 39 bar code requires a start and stop char-
acter — the * character is encoded as NWNNWNWNN. Thus
the shortest Code 39 bar code is three characters,
although the bar code-reading hardware usually strips off
the * characters. This requirement also makes it easy to
visually check if a bar code is Code 39. If the first nine
bars match the last nine bars and the bars are two dis-
tinct widths, you can be fairly certain you are looking at
a Code 39 bar code.

The left and right edges of the entire bar code must be
surrounded by enough white space for the optical scanner
to distinguish between the end of one bar code and the
beginning of another. The white space must be at least .25
inches, or 10 times the width of a narrow bar, whichever is
greater. The TBarCode component doesn’t consider this;
instead, it expects the user to place the component in an
area with sufficient white space.

The Component
Many excellent articles on component building are avail-
able. So here we’ll concentrate on the code unique to
TBarCode.

TBarCode’s component declaration is one of the simplest
you’ll see:

type
TBarCode = class(TCustomLabel)
private

procedure CaptionChanged(var Message: TMessage);
message CM_TEXTCHANGED;

protected
procedure Paint; override;

public
constructor Create(AOwner: TComponent); override;

published
property Caption;
property Alignment;

end;
39 January 1997 Delphi Informant
Descend
The first step in creating a component is to decide from
which component to descend. In TBarCode’s case,
TCustomLabel is the perfect choice. TBarCode is simply a
label that paints itself in an encoded format. TCustomLabel
provides a canvas on which to draw the bar code, and has
published properties, such as Left, Top, Width, and Height,
that we don’t have to code.

Additionally, TCustomLabel has a number of fully functional
properties that are hidden from the user because they are pro-
tected. By simply publishing the Alignment and Caption
properties, we round out the required properties.

Create
Next, the Create method is overridden to provide some rea-
sonable defaults:

constructor TBarCode.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
ControlStyle := ControlStyle - [csOpaque];
Alignment := taCenter;
AutoSize := False;
Height := 50;
Width := 175;

end;

If the Height and Width properties are not set, they take
on the default Height and Width of their ancestor,
TCustomLabel. This causes problems, because the default
Width of a label is not wide enough for TBarCode to dis-
play the bar code interpretation of its default caption,
BARCODE1. The Paint method won’t print a bar code if
the whole caption doesn’t fit, so the user would have an
invisible component. Setting the Width property to 175
assures that a default bar code will be visible on the screen
when the user places TBarCode on a form.

A minor disadvantage to deriving TBarCode from
TCustomLabel (compared to TGraphicControl) is that
TCustomLabel implements the AutoSize feature. Of course,
TCustomLabel gets the width wrong for TBarCode because it
expects the caption to be painted in the current font. Because
we aren’t publishing the AutoSize property, the Create method
sets AutoSize to False, so we can forget about it.

Removing the csOpaque ControlStyle is also important to the
drawing of the bar code. According to Delphi’s online Help,
adding csOpaque to the ControlStyle property means that the
control hides any items behind it, making it unnecessary to
draw them.

By removing csOpaque, we’re telling Windows to redraw the
background before calling TBarCode’s Paint procedure.
Redrawing the background erases any existing bar codes from
previous paints, so we don’t need to code an erase routine.
Additionally, when printing white bars, the Paint routine
doesn’t need to print anything at all; instead, it relies on the
background color to show through.

Delphi at Work
Auto Update
You have probably noticed that when editing the Caption
property of a label in the Object Inspector, the Label on the
form is updated with each key stroke. Two mechanisms can
make this happen.

The first mechanism is through the creation of a custom
Property Editor, say TMyCaptionEditor, with the
paAutoUpdate attribute:

type TMyCaptionEditor = class(TStringProperty)
public

function GetAttributes: TPropertyAttributes; override;
procedure SetValue(const Value: string); override;

end;

...

function TMyCaptionProperty.GetAttributes:
TPropertyAttributes;

begin
Result := [paMultiSelect,paAutoUpdate];

end;

paAutoUpdate tells Delphi to call the SetValue procedure after
each change is made to the MyCaption property, instead of wait-
ing until an entire edit session is posted. Within the SetValue
procedure, you can then cause a component to be repainted.
This works fine, but the second mechanism is simpler.

Delphi defines a set of Component Messages that are listed
in the online Help. One of the messages, Cm_TextChanged,
is triggered whenever the Text property of a component is
changed (regardless of the Property Editor associated with
that property). By attaching code to this message to repaint
the bar code, the TBarCode will exhibit the same
AutoUpdate behavior as a TLabel.

What’s puzzling about this mechanism is that the user is
changing the Caption property of TBarCode, not the Text
property. In fact, TBarCode doesn’t even appear to have a
Text property. Because it’s descended from TCustomLabel,
TBarCode has all the properties of TCustomLabel, includ-
ing the Text property. This is a protected property, so the
Object Inspector and your code don’t have access to it.
But Delphi does have access to it, and magically keeps “in
sync” with the Caption property.

You can prove this by descending a component from
TCustomLabel and publishing the Text property. As you
edit the Caption property in the Object Inspector, the Text
property is automatically updated (the reverse is also true).
Thus, whenever the Caption property is changed, a
Cm_TextChanged message is triggered, which in the case of
TBarCode, calls the CaptionChanged procedure.
CaptionChanged causes the bar code to repaint, effectively
implementing the AutoUpdate feature.

Validating Input
As mentioned, the Code 39 specification only supports 44
characters, so it’s necessary to validate any input the user sup-
plies. It would be reasonable to give the user an error message
40 January 1997 Delphi Informant
when an invalid message is entered, and raise an exception if
it happens at run time. However, it’s easier and less intrusive
to convert any lower-case characters to upper case and filter
out any illegal characters.

Since the CaptionChanged procedure is called each time the
Caption is changed, the validation is done within the
CaptionChanged procedure. Note that although some charac-
ters will be discarded, they still appear in the Object
Inspector’s in-place editor until the user exits. This is because
the in-place editor does not refresh itself from the Caption
property after each change.

Painting Concerns
As you can see from the component definition, the Paint pro-
cedure is overridden so we can paint a bar code instead of a
text caption. The code for the Paint procedure is:

procedure TBarCode.Paint;
begin

BarCodePaint(Caption,Canvas,0,0,Width,Height,Alignment);
end;

There’s not much to it; in fact, all it does is call BarCodePaint.
While this appears inefficient, it’s always a good idea to design
visual components in this manner. By doing so, the compo-
nent can be “painted” on a printer as well as on the screen.

Because BarCodePaint is declared in the interface section of
the Barcode unit, it can be called by other units. For exam-
ple, the PrintClick event prints the form’s bar code:

procedure TForm1.PrintClick(Sender: TObject);
var

ScaleX,ScaleY : Integer;
begin

Printer.BeginDoc;

ScaleX := WinProcs.GetDeviceCaps(
Printer.Handle,LOGPIXELSX) div 96;

ScaleY := WinProcs.GetDeviceCaps(
Printer.Handle, LOGPIXELSY) div 96;

BarCodePaint(BarCode1.Caption,Printer.Canvas,
BarCode1.Left*ScaleX,
BarCode1.Top*ScaleY,
BarCode1.Width*ScaleX,
BarCode1.Height*ScaleY,
BarCode1.Alignment);

Printer.EndDoc;
end;

I find it simplifies component development if I make Paint
routines available to other units and have those routines
accept a Canvas parameter so the components can be easily
printed. Because BarCodePaint is coded in this way, only one
line of code was necessary to implement a QuickReport ver-
sion of this component.

BarcodePaint
BarcodePaint is the workhorse of the component, but it’s
still quite simple. It begins by checking the input, setting
up the canvas, then adding the following code:

Delphi at Work

David R. Faulkner is President of Software Development at Island Community
Lending in Honolulu, HI. He is co-author of Using Delphi: Special Edition (QUE,
1995) and can be reached at (808) 572-5524 or davef@maui.net.

Figure 3: A Code 39 bar code created by TBarCode.
for x := 1 to Length(Caption) do begin
Index := Pos(Caption[x],cValidCode39Characters);
if Index = 0 then

Continue;
for y := 1 to 9 do

PaintABar(BarCodeTable[Index][y],odd(y),Canvas,
LeftEdge,Top,Height,NarrowWidth,WideWidth);

Inc(LeftEdge,NarrowWidth);
end;

The interesting part here is that the cValidCode39Characters
constant is not only used to validate the input; it’s also a
map into BarCodeTable. For example, the character “A” is
the 11th character in the cValidCode39Characters string and
corresponds to the 11th element in the BarCodeTable array.

BarCodeTable is a two-dimensional array whose first ele-
ment is 1,1 for conveyance (as compared to 0,0). Each row
of BarCodeTable contains a series of nine Ws and Ns which
specify the pattern of wide and narrow bars for the corre-
sponding character.

PaintABar
PaintABar’s job is to paint a single bar at the passed coordi-
nates. The code that paints the bar is:

if ThisBarIsBlack then
aCanvas.Rectangle(LeftEdge,Top,

LeftEdge+CurrentWidth,Top+Height);
Inc(LeftEdge,CurrentWidth);

If the bar being printed is white, PaintABar does not paint
anything, but still advances the left edge. TBarCode can
get away with not painting anything because it removed
csOpaque from the ControlStyle. This means that when
painting on a screen, Windows will erase the previously
painted bar code, and when painting on a printer’s canvas,
the white spaces will let the paper show through (see
Figure 3).
41 January 1997 Delphi Informant
Other Goodies
In addition to TBarCode, you should check out the down-
load file. It contains TDBBarCode, a data-aware version of
TBarCode; TQRBarcode, a QuickReport compatible ver-
sion; and TQRDBBarCode, a QuickReport data-aware ver-
sion. Both 16- and 32-bit resource files are included, so it
can be compiled in Delphi 1 or 2.

Conclusion
I’ve included the sample program, shown in Figure 3. It
lets you enter a value at run time and see the resulting bar
code. The sample program also prints the bar code for you
so you can test it against your optical scanner.

For more information and specifications for other bar codes,
check out http://www.hp.com:80/AccessGuide/TI_ahp.html
and follow the link to Bar Code Symbologies. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JAN\DI9701DF.

42 January 1997 Delphi Informant

Case Study

By Don Bauer

TWorldMap
Seeing the World in a New Way

Figure 1: A cap
on the Mir spac
While creating an application for the United States Marine Corps,
Stanley Associates’ Senior Technical Manager, Don Bauer, and

Senior Analyst, Dan Adams, wanted to add a means to graphically view
training schedules relative to training location. Unfortunately, time and
money constraints wouldn’t allow Stanley Associates to simply buy conven-
tional map software. Additionally, the Marine Corps Training Exercise and
Employment Planning (MCTEEP) project didn’t warrant developing the map
at the government’s expense.
With this in mind, Don read Programming
Windows with Borland C++ by William
Roetzheim [Ziff-Davis Press, 1992] which
contained, as an example, a primitive map
system — no other functionality was provid-
ed. Don decided to build a map component
on his own, and if successful, market it for
future release.

The Development Process
Don’s ultimate goal was to create a low-
cost, royalty-free, easy-to-use GEO inter-
face that wasn’t encumbered with the com-
plexities of typical GIS software. His goals,
ture from the Earth Observation Aid being used
e station.
as he began development in September
1995, were straightforward — he wanted
to create a component in which users only
needed to know the longitude and latitude,
and the online Help would walk them
through the rest. The original features
would include a map, zooming, and points.

Delphi seemed the natural choice to Don, as
earlier that year, he, along with four other
programmers, converted MCTEEP v1.0
from PowerBuilder to Delphi in less than
four months. The switch to Delphi resulted
in much-improved capability, tremendous
performance gains, and the ability to easily
modify and improve the code.

Don approached the map development
process incrementally, finalizing each step of
the process to ensure that the original goals
were met. As development proceeded, he
added functionality that fit in well with the
design intent of the component.

The development process wasn’t always
easy. The biggest setbacks came from work-
ing with the Windows 3.1 graphic design
interface (GDI). It was a constant struggle
to keep within the bounds of performance
and resource usage with the 16-bit version,
because the GDI not only affected display,
but printing as well. When working with

Figure 2: Galileo, an astrology program written by Dirk Paessler.

Case Study

Figure 3: The EPA Clean Air Act model using TWorldMap.
large polygons in the Windows 3.1 GDI, things stopped
working for no apparent reason, making development diffi-
cult. To overcome this, Don and David Steel, a Senior
Windows Programmer, systematically determined the limi-
tations of the GDI and built the map component’s display
and printing capabilities to work within them.

The Beta Cycle
Despite the setbacks, the beta cycle began moving the com-
ponent toward its current form. The beta testers gave Don
feedback, and wherever possible, the changes were imple-
mented. This crucial process resulted in a stable, feature-rich
component. TWorldMap version 1.0 began shipping in
March of 1996 as a 16-bit component. Currently,
TWorldMap is available in both 16- and 32-bit versions with
parallel capabilities under a combined codebase.

Capabilities
TWorldMap’s capabilities include:

Built-in Zoom — The three ways to control the map are:
set the EnableZoom Property to True and click your
mouse button, drag a rectangle on the map, and it resizes
automatically; use the ZoomByFactor method and zoom
the map, centered on the latitude/longitude value sent; or
set custom coordinates and redraw the map.
Custom Point Object — The Custom Point object allows
the developer to add, delete, update, or find points on the
map. An OnPointClicked event passes all point informa-
tion to the calling program, enabling actions to be based
upon clicking a point on the map. Points support various
geometric shapes as well as bitmaps to be displayed.
Live Clickable Polygons — Each polygon (based upon
level of detail) can be systematically included or excluded
for use in the OnPolyClick event. The component passes
the polygon object to the calling program. The descrip-
tion can be extracted and displayed or used to query a
database to provide amplifying information.
43 January 1997 Delphi Informant
Custom Line Object — The component maintains an inter-
nal list of lines that are redrawn anytime the map is redrawn.
Support for lines has also been included to allow connecting
points on the map to show routes, service webs, etc. If a line
passes through the current display area, it is drawn.
Custom Printing — The component supports two types
of printing — full page or user-defined location and size
— on an existing print job. Additionally, the map will
print in color and supports plotters.
Create Bitmaps — Create bitmaps of your map screens
for inclusion in your presentations and word processing
documents. Simply pick a file name and dimensions, and
the component will create a bitmap representation of
your current map, including all details.

Customers
TWorldMap has many customers who use the component in
different ways: NASA and the Earth Observation Program, as
illustrated in Figure 1, are currently using the component
onboard the Mir space station in software that uses the world
map to display points of interest and link them to satellite
photographs taken on previous missions (see the sidebar
“Earth Observation Aid” on page 44); a trucking company in
The TWorldMap component is totally configurable by the
developer. Its functionality includes built-in zoom, built-in
adjustable latitude/longitude grid, a custom point object, cus-
tom line object, clickable polygons, custom printing, and cre-
ating bitmaps. Available in both 16- and 32-bit versions,
TWorldMap is a royalty-free, easy-to-use solution for many
day-to-day geo-presentaion needs.

Target Audience: Anyone needing a simple, fast, easy-to-use,
customizable map interface added to their application.

Contact: Don Bauer
Phone: (202) 396-6970
Fax: (202) 396-6914
Voice Mail/Pager: (703) 616-6166
Web Site: http://www.stanleyassoc.com/worldmap/wmap.htm
E-Mail: donbauer@illuminet.net

APPLICATION PROFILE

Don Bauer is Director of Software Development, East Coast for Marotz, Inc. (a
Delphi Development Company), and is currently converting the Navy’s Fleet
Modernization Program Management Information System to Delphi 2. He can be
reached at donbauer@illuminet.net.

Figure 4: A phone sales distribution system written by Gary
Holbrook.

Case Study
Canada uses the component to show truck routes; three com-
mercial astrology systems use TWorldMap (see Figure 2); in
Newport Beach, CA, a statistics company uses TWorldMap to
show salary and benefit distribution within North America;
44 January 1997 Delphi Informant
the Environmental Protection Agency (EPA) uses TWorldMap
for its Clean Air Act health benefit model (see Figure 3); the
US Marine Corps uses it for its scheduling system; a commer-
cial marketing company is using the component to color states
by sales revenue (see Figure 4); and the US Army is integrat-
ing TWorldMap into the Automated BattleBook system to
show the world’s reserve equipment depots.

Looking Ahead
Custom systems are created by Don for customers who need
specific capabilities, and all added capabilities are made avail-
able to registered users.

Don currently has a few major clients that are waiting for the
map to support different projections, live scrolling, infinite
zoom-in, and, of course, a native link to database tables; these
are his current areas of focus. ∆
The Earth Observation Group approached the Field
Deployable Trainer (FDT) project, a joint team of NASA and
United Space Alliance employees, to add an application to a
laptop computer already on the Mir space station. Currently,
the Earth Observation Group is conducting a scientific experi-
ment on Mir that involves taking a series of pictures over time
of many locations on Earth from Mir. The group asked for a
map in which you could select one of their sites and see a pic-
ture of that site previously taken from space.

The FDT team planned on using a bitmap image for the map.
However, while waiting for the pictures to use in the application,
the team saw an advertisment for TWorldMap. The team thought
it would provide a better interface, if the component could be
obtained in time; only three weeks remained until the flight soft-
ware needed to be delivered, and it isn’t normally possible to pur-
chase software that quickly for a government project. They called
Don to determine if NASA had a license, or if there was some
way to use the code. It turned out that another group at the
Johnson Space Center, working on a Shuttle emergency landing
site program, had the software, and Don let the team tag on.

It took less than a week to write the program using the
TWorldMap component. The program includes a scale bar,
variably spaced latitude/longitude grid bars, and site informa-
tion that displays when the cursor approaches a marked site,
which is why it took as long as it did. TWorldMap made the
application much better.

The FDT team has received nothing but favorable comments
from NASA staffers, including astronauts, who have seen the
application. Additional features are planned for the next version.

— David B. Chiquelin
Lead Programmer, Field Deployable Trainer project
United Space Alliance

E A R T H O B S E R V A T I O N A I D

45 January 1997 Delphi Informant

New & Used

By Bill Todd

InfoPower 2.0
Making Life Easier for Database Developers

Figure 1: The pi

Character

#
?
&

~

@
!

;

*

[]
{}
A lot of great new features have been added to Woll2Woll Software’s
InfoPower 2.0, but one thing hasn’t changed: InfoPower is still the

“must have” addition to Delphi for anyone developing database applica-
tions. If you’ve never used InfoPower, you may want to browse the sidebar
“An InfoPower Primer” (on page 47) before reading on.
Picture Masks
One of the more exciting and useful new
features in version 2.0 is the use of
Paradox-style picture masks for controlling
what users can enter in a field. This is a
welcome replacement for the very limited
edit mask capability built into Delphi.
Figure 1 shows the picture characters used
with InfoPower.

There are several ways to enter pictures when
you use InfoPower components, but perhaps
the easiest is by clicking on the PictureMask
property of a TwwTable component to dis-
play the dialog box shown in Figure 2.
cture characters used with InfoPower.

Description

Any digit.
Any letter, either upper or lower case.
Any letter. Lower-case letters are converted
to upper case.
Any letter. Upper-case letters are converted
to lower case.
Any character.
Any character. Letters are converted to
upper case.
Treat the next character as a literal, not a
mask character.
Repeat count. *# means any number of
numbers. *5# means five numbers.
Anything in square brackets is optional.
Group of alternatives. {Y, N, U} means the
user must enter either Y, N, or U.
Clicking the ellipsis button in the Picture

Mask edit control of this dialog box leads to
the Lookup Picture Mask dialog box shown
in Figure 3. This dialog box lists a number
of useful pictures that have already been
built for you; just select the one you want.

If you need to design a custom picture,
click the Design Mask button in the Select
Fields dialog box (again, see Figure 2) to
display the Design Picture Mask dialog
box in Figure 4.

For example, suppose you need a picture
that will let users enter either a valid US
five-digit or nine-digit ZIP code or a
Canadian postal code in a field. Start by
typing the picture:

{#&# &#&,#####[-####]}

into the Picture Mask field. Now click the
Verify Syntax button to verify that your pic-
ture is syntactically correct, then type sam-
ple values into the Sample Value field to
ensure the picture works as you intended.

If you will use this picture again, click the
Save Mask button to add it to the database
of pictures displayed in the Lookup Picture
Mask dialog box shown in Figure 3. This is
just one example of a mask that’s impossi-
ble to create in Delphi without InfoPower.

Figure 2 (Top): The Select Fields dialog box provides an easy
way to enter pictures. Figure 3 (Bottom): Simply select the pic-
ture that best fits your needs.

Figure 4: If no picture fits the bill, InfoPower 2.0 lets you “roll
your own.”

New & Used
Another good example of the superiority of InfoPower’s
pictures over Delphi’s edit masks is the use of the picture:

#[#]/#[#]/##[##]

for a simple date. Not only does this picture allow you to
enter either a one- or two-digit month or day, it also lets
you enter either a two- or four-digit year.

If you’ve ever tried to use a Delphi edit mask for a date, you
have probably discovered that it puts the two literal characters
(the slashes) into the field as soon as it gets focus; you can’t
eliminate them if you then decide to leave the field blank.
InfoPower doesn’t insert the literals until, when typing your
value, you reach the point at which they appear. If you high-
light the field and delete the value, the literal characters dis-
appear as well, allowing you to easily leave a field blank.

As with all other InfoPower features, pictures work identi-
cally in both Delphi 1 and 2. Also, they apply whether
you assign a value to a field in code, or the data is entered
by the user through a form.

By setting the AllowInvalidExit property to True, you can
allow a user to exit a field that contains an invalid value.
You can also control whether the pictures are used for
interactive editing by setting the UsePictureMask property.

InfoPower controls also include OnCheckValue and
OnInvalidValue events to let you control what happens when
46 January 1997 Delphi Informant
the user enters an invalid value. Using these events, you can
determine if the value entered by the user is indeed invalid. If
the value is invalid, you can display an error message that
identifies the invalid field when the user tries to post the
record. Because the OnInvalidValue event identifies the
offending field, you can also move focus to that field and
change its color.

Filter Dialog
TwwFilterDialog gives end users an easy way to filter or query
a dataset on multiple fields. To use it, just drop the
FilterDialog component on your form, set its DataSource
property, and provide a button or menu choice to call its
Execute method. Calling Execute displays the dialog box
shown in Figure 5.

You can specify one of two ways to select records. If the dataset
being searched is a TwwTable or TwwQBE, then a BDE filter is
applied. If the dataset is a TwwQuery, you can either filter the
query result set, or let the FilterDialog modify the WHERE
clause of the query and re-execute it to select the records. You
can set the caption of the dialog box, as well as choose the
fields for which the user can enter selection criteria.

The View Summary button allows users to see the field or
fields for which they have entered selection criteria. The
By Value and By Range tabs let users enter a single value
to search for, or a range of values. Entering a single value
lets users choose to search for an exact match, a record
that starts with the search value, or a record that contains
the search value anywhere in the field. Users can also
select a case-sensitive search.

Wait — There’s More
InfoPower 2.0 includes three other new components:
1) The TwwIntl component is a non-visual control that

allows easy internationalizing of applications that use
InfoPower. It provides a central location where you can
change the captions, hints, and button styles used by all
of InfoPower’s built-in, end-user dialog boxes.

2) The TwwDBSpinEdit lets users easily increment or decre-
ment the value in a numeric or date field using the
mouse or the up- and down-arrow keys. You can set the

Figure 5: Calling Execute displays this dialog box.

New & Used
minimum, maximum, and increment values. Also, you
can use this control without binding it to a data source.

3) TwwDBEdit is a replacement for Delphi’s TDBEdit con-
trol. The TwwDBEdit provides support for InfoPower
picture masks. In addition, it automatically detects date
fields and lets users enter the current date by pressing
s.

An Even More Powerful Grid
One of the stars of InfoPower 1.0 was the TwwDBGrid
component, which provided many features not found in
the Delphi TDBGrid component. InfoPower 2.0 enhances
the grid by letting you embed a checkbox, combo box,
spin edit, bitmap, lookup combo box, or custom edit box
in a field of the grid. Handling long text strings is now
easier because you can scale a cell to double or triple its
normal height and word-wrap text in the cell.

Picture edit masks are fully supported in a grid, as is
selecting multiple records. You can also cause J to
behave as F and move focus to the next cell. Another
great enhancement is the PerfectFit property. If set to True,
it automatically sizes the grid so that no space is left
between the last row and the bottom of the grid.

Lookup Combo Power for
Client/Server Developers
The use of lookup combo boxes presented performance prob-
lems for client/server developers because the lookup dataset
had to be a Table component; as a result, opening each table
and filling the BDE cache could go slowly. The only solution
was to load a combo box from a query’s result set. InfoPower
2.0 solves this problem by letting you use a SQL or QBE
query as the source for the lookup data; you don’t have to
write a single line of code.

The new TwwDBLookupCombo not only can be placed in
a cell in the InfoPower grid, but can also be placed in the
new TDBCtrlGrid in Delphi 2. Also, you can use a detail
table as the lookup source, and multiple lookup combo
components can now be attached to a single lookup table.

No More Codes
Some of the most annoying things to deal with when dis-
playing data in a grid are fields that contain codes such as
47 January 1997 Delphi Informant
For those who haven’t had the pleasure, here’s a short rundown of

existing features in InfoPower version 1.0. All are available to users of

Delphi 1 or 2.

A Table component that fully supports Borland Database Engine

(BDE) filters. This includes the ability to change the filter criteria

on-the-fly at run time; a Pack method for both Paradox and dBASE

tables; and a wwFindKey method that works faster with SQL tables

than the Delphi 1 FindKey method.

A QBE component that fully supports QBE queries. This includes

an AnswerTable property to let you easily save your result set to disk,

as well as an AuxiliaryTables property so you can have the query cre-

ate Paradox-style KeyViol, Changed, Inserted, and Deleted tables in

the user’s private directory.

An enhanced data-aware grid component. This lets you:

display a cell as a checkbox, combo box, lookup combo box,

or custom dialog box,

display the text of a memo field in the grid,

double-click a memo field in the grid and display a pop-up

memo editor, and

display multiple tables in a single grid and define non-scrollable

columns in the grid.

High-performance search controls. These include incremental, exact

match, “starts with,” and sub-string searching.

A customizable pop-up memo field editor. This is used to edit

memo fields displayed in any control.

A DBComboBox component. This is equivalent to the Delphi

DBComboBox component except that F, V+F, J, and E

work as expected.

A DBComboDialog component. This features an ellipsis button and

an event triggered when the user clicks the button, allowing you to

display custom dialog boxes to help users edit a field in a table.

A DBLookupCombo component. This lets you:

display any number of fields in the drop-down list,

display column separators in the drop-down list,

display column headings in the drop-down list,

control whether the drop-down list grows to the left or to the right,

control which column sorts the drop-down list, and

allow users to incrementally search the drop-down list by typing —

in the field display — a description instead of a code, even though

the code is stored in the table.

You can use this component without binding it to a data table.

A DBLookupComboDialog component. This includes all the fea-

tures of the DBLookupCombo component except that, instead of a

drop-down list, this control displays a dialog box with the lookup

table displayed in a customizable grid.

— Bill Todd

AN INFOPOWER PRIMER

New & Used

InfoPower 2.0 includes,
among others, these welcome
additions to Delphi: Paradox-
style picture masks, simplified
dataset filtering and querying,
and an even more powerful
data-aware grid component.
If you’re a database develop-
er, InfoPower 2.0 is a must-
have tool.

Woll2Woll Software
2217 Rhone Dr.,
Livermore, CA 94550
Phone: (800) 965-2965 or
(510) 371-1663
Fax: (510) 371-1664
E-Mail: Internet:
woll2woll@woll2woll.com or
CIS: 76207,2541
Web Site:
http://www.woll2woll.com
Price: InfoPower 2.0,
US$199; source code is
available for an additional
US$99. Upgrade from
previous version, US$99.
part numbers, job codes, and
customer numbers. In Delphi
1, the only solution is to cre-
ate calculated fields, then
write code to look up the val-
ues and display them next to
the codes in the grid.

Unfortunately, this does not
help users who must enter
data and may not remember
the codes. The enhanced
TwwDBComboBox comes to
the rescue by allowing you to
display a description instead of
the code in both the field
itself and in the drop-down
list, while still storing the code
in the underlying table.

TwwDBLookupCombo has
done this since version 1.0 in
instances when the lookup
data is stored in a table; but
Bill Todd is President of The Database Group, Inc., a Phoenix-area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Creating Paradox for Windows Applications [New Riders
Publishing, 1994], and Paradox for Windows Power Programming [QUE, 1995];
a member of Team Borland; and a speaker at every Borland Developers
Conference. He can be reached at (602) 802-0178, or on CompuServe at
71333,2146.
now you have the option to show descriptions instead of
codes when the lookup information is not in a table.

Other Enhancements
If you deal with memo fields, one of the handiest compo-
nents in InfoPower is the TwwMemoDlg. This provides a
pop-up memo field editor that you can call from your
48 January 1997 Delphi Informant
code at any time to let users edit the text in a memo field.
Now you can attach additional buttons to the memo edi-
tor dialog box to call a spell checker or perform any other
function you need.

The TwwLocateDialog component, which lets users search for
a value in any field of a dataset, now allows users to search on
calculated and lookup fields.

Conclusion
If you develop database applications and don’t use
InfoPower, you’re making your life a lot harder than it
needs to be. Not only does InfoPower offer a wide array of
features unavailable in any version of Delphi, it also offers
the same feature set for both Delphi 1 and 2. This makes
maintaining a common code base for both the Win16 and
Win32 platforms much easier. ∆

49 January 1997 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.

SysTools for Delphi
A Low-Level Delphi Supermarket

Figure 1: Differe
SysTools for Delph

Purpose of U

String Manipulat

Date/Time Mani
Low Level Opera
System Routines

Bit Set Manipula

String Dictionary

Double Ended Q
Large Array and
Large Matrix (2 d

Collection Classe

Linked List

Virtual Array

Tree Class

Sorting Engine

Timer

BCD Arithmetic M

Registry/INI File
Most third-party Delphi products fall into one of two categories: com-
ponent libraries or utilities. The first is self-explanatory; the latter

helps programmers develop, debug, and profile applications, and create
custom components.
SysTools for Delphi is different; it contains no
components or utilities. It is however, a large
library of low-level routines that can help with
the inner workings of applications. Produced
by TurboPower Software Company, SysTools
is based on an earlier TurboPower product,
Win/Sys Library for Borland Pascal and C++.
While most tools in the earlier library are
included, some differences exist (see Figure 1).

A Comparison of Win/Sys and SysTools
In transforming the Win/Sys Library into
SysTools for Delphi, TurboPower had to
decide whether to provide full reverse compat-
nces between the tools in Win/Sys Library and
i.

nit Win/Sys Library SysTools

ion WSString STString
STStr? (S/L/Z)

pulation WSDate STDate
ting WSInLine STUtils

WSDos

tion WSBitSet STBits

WSPchDct STDict

ueue WSQueue STDQue
WSLarray STLarr

im) STMatrix

s WSColl STColl

WSList STList

(not implemented) STVarr

WSTree STTree

WSSort STSort

WSTimer (not implemented)

ethods (not implemented) STBCD

Access (not implemented) STRegIni
ibility with Win/Sys or take full advantage of
Delphi’s new features. TurboPower opted for
the latter, writing SysTools almost from
scratch in Delphi (with a significant amount
of assembly code). SysTools works with either
Delphi 1 or 2. While many of its methods
and properties have the same names and para-
meters as in Win/Sys Library, some do not.

SysTools works with either 16- or 32-bit
operating systems. In 16-bit programs,
most SysTools routines are similar to those
in Win/Sys; however, this isn’t the case with
32-bit programs. Some Win/Sys units aren’t
available, including WsTimer (timing and
delay procedures), WsDPMI (DPMI
access), and WsHeap (Heap analysis).
TurboPower also has a new utility, Memory
Sleuth (available separately), that includes
tools to analyze and report various prob-
lems such as memory leaks and resource
allocation errors in 32-bit programs.

The classes comprising the SysTools library
can be divided into three groups: string and
numerical data manipulation, container class-
es, and a low-level interface to the Windows
operating system. With the exception of the
container classes (which are discussed in one
chapter), each class is explained in its own
chapter of the manual which defines all the
key properties and methods using clear
examples. Each chapter also includes a sam-
ple application demonstrating its features and
capabilities. Now we’ll look at the features,
uses, and limitations of the main class.

New & Used
String Methods
SysTools fully supports the three types of strings used in
Delphi 2: length-byte (old-style Pascal), null-terminated, and
ANSI strings. Each string-type has a separate unit (i.e. STStrS,
STStrZ, and STStrL) with all methods duplicated in each
unit. There are routines to parse and manipulate filenames
such as AddBackSlash, DefaultExtention, and JustName; and
string parsing/formatting routines to count, wrap, and locate
words (a substring surrounded by delimiters) in a string.

The Boyer-Moore algorithm, a powerful search method, is
fully implemented; searches can be case sensitive or insensi-
tive. SysTools’ Soundex algorithm enables you to test for
words that sound alike. Also included are text formatting
primitives to trim blanks, center text, and so on. When you
combine these methods with those in Delphi, the string-
handling tools are well represented.

Date/Time Routines
If you own or have seen TurboPower’s component library,
Orpheus, you’re probably familiar with many of the date and
time manipulation methods. SysTools and Orpheus share a
common unit, STDate, which includes the basic date and
time manipulation tools while using additional, autonomous
units to handle international issues and date/time string
manipulation. The unit provides support for Julian dates (a
compact numeric representation used for any date from
1/1/1600 to 12/31/3999). Dates can be represented in a vari-
ety of ways using picture masks such as hh:mm:ss. There are
also useful date/time testing functions, including ValidDate
and IsLeapYear, along with many conversion methods such as
DayOfWeek, MonthToString, TimeStringToSTTime, and
RoundToNearestMinute. Many contain error checking.
InternationalDate and InternationalLongDate are useful func-
tions that return the appropriate picture masks as stored in
the [intl] section of WIN.INI.

BCD Math
Binary Coded Data (BCD) is a high-precision, floating-point
class useful in financial or accounting applications. As
explained in the manual, BCD was “originally defined in
Turbo Pascal 3.0 [as] an array of bytes providing 18 signifi-
cant digit accuracy and a range of 1E-63 to 1E+63.” Both the
original and SysTools’ BCD implementation store amounts
directly in the familiar base, avoiding conversion to and from
binary floating point types. Thus, the class is intuitive to
work with. This new BCD class can have as many as 36 sig-
nificant digits and range from 1E-64 to slightly less than
1E+64. Most of the math functions required for financial
applications are included (up to power functions); however
some of those that might be needed in scientific applications
(trigonometric sine, cos, etc.) are not.

The BCD class includes methods to convert to and from
Delphi strings, integers, and real types. Reverse compatibility
with TurboPower’s Object Professional (DOS Turbo Pascal)
Library is also provided, as long as the latter’s transcendental
functions are not used. A BCD Calculator application is
50 January 1997 Delphi Informant
included as an example
(see Figure 2).

Container Classes
All SysTools’ container
classes descend from
TPersistent, so all are
streamable. Overriding
TPersistent’s Assign
method, many of the
classes provide a means to
convert data to another
container class, including
TSTList, TSTDQue,
TSTLArray, TSTLMatrix,
and the two collections.
As you would expect,
methods to read from
and write to files or streams of different types are included.

The container classes fall into two general groups: those
based on pointers, such as linked lists, trees, and collections;
and those based on untyped variables (i.e. arrays). Therefore
you can store any kind of data in each. You can also adjust
data element size and the number of elements at run time.
All of these classes descend from/or use one or two base class-
es, TSTContainer and sometimes TSTNode. You can use these
classes to derive your own container classes.

As with many other classes in this library, all the container
classes are “thread-safe.” In other words, if you want to use
them in Delphi 2 applications which take advantage of
Win32’s multi-tasking capabilities, a safety net is provided.
This safety net includes critical sections, which must finish
their work before another thread can become active. Among
other scenarios, this prevents two threads from attempting to
read from and write to the same data within too close a time-
frame, potentially corrupting that data. Altogether there are 10
container classes. Let’s take a brief look at each.

Bit Sets, Lists, and Queues
If you’re writing an application that uses a large number of
Boolean switches, and/or memory is a critical factor, the
TSTBits class may fulfill your requirements. Its resizable bit
sets can be set, cleared, toggled, or tested. Both of the list
classes, TSTList and TSTDQue, provide methods for adding,
deleting, moving, or testing for items. Among other unusual
capabilities, you can step through (iterate) a list and join or
separate lists.

Arrays of Global Proportions:
Sorted and Unsorted Collections
Using the Windows global heap, SysTools’ two large array classes
expand beyond the dimensional limits of Delphi’s arrays (partic-
ularly in 16-bit mode.) There is, however, a caveat in 32-bit
mode: operations involving large arrays will be slower than
Delphi’s native arrays, despite the former’s optimization. While
no separate class for 3D arrays is included, an example program

Figure 2: Accepting input in deci-
mal format, SysTools’ BCD
Calculator shows the result in BCD’s
internal format.

51 Ja

is inclu
one by
point t
gram e
Figure

SysTo
arrays
pointe
you in
page s
of the
you ar
dilemm
access
acter t

Much
includ
LastTh
from t
lection
collect
single
presen

A Dict
TSTD
from a
referrin
a langu
strings
algorit
all the
metho
clear, f
ies in t
a singl

TSTTr
only li
empha
diction
The n
balanc
shows
of the
some d

The So
SysToo
includ
algorit
with t
hold u
by the
ing ap
to sort

o
o

e
o
a

g
n

i

l
u
e
s

re 4: SysTools’ TSTTree class has many inserting, deleting,
earching capabilities.

re 5: The sample sorting application with randomly gener-
s

New
ded that demonstrates how to create
 having each element of a large array
o a large matrix. An example pro-
mploying this technique is shown in
3.

ols’ two collections are sparse
of pointers in which most of the
rs are assumed to be empty. When
stantiate a collection, you set a
ize that determines the initial size
 collection. During this process
e faced with the speed versus size

a. Large pages enable faster
while small pages are bulkier, becoming closer in char-
o linked lists.

of the functionality of the Borland Pascal 7 TCollection is
ed in these classes with the exception of the FirstThat and
at functions. Interestingly, these methods are also absent
he new incarnation of TCollection in Delphi 2. These col-
 classes include new methods to test the efficiency of a
ion, to pack it, to iterate through it, and to clear it with a
call. The familiar methods At, AtInsert, and IndexOf are
t, along with the Count and Items properties.

ionary and a Tree
ictionary is a string dictionary, and is not all that different
 dictionary on your book shelf. You look up objects by
g to their key strings, analogous to the terms or words in
age dictionary. The objects themselves can be anything:

, data records, or numerical data. The class uses hashing
hms to search for data and is particularly efficient when
 data fits into RAM. TSTDictionary shares many basic
ds with other container classes including add, delete,
ind, and iterate. While you can join two string dictionar-
his class and in TSTList, you can join — but not split —
e string dictionary into two (as you can with TSTList).

ee provides a balanced, binary search tree. Its size is
mited by available memory. The documentation
sizes that TSTTree includes capabilities of both a string
ary and the sorting engine (which we’ll discuss soon).

odes of the tree are stored in sorted order; order and
e are maintained during inserts and deletes. Figure 4
 a sample application that demonstrates the capabilities
TSTTree class. Having discussed each container class in
etail, let’s look at SysTools’ Sorting Engine.

rting Engine and ASCII Text File Handling
ls’ sorting unit can be applied to a variety of data types,

ing records and arrays. It uses a non-recursive quicksort
hm, along with some characteristics of a merge sort. As
he container classes, it’s thread-safe. It can theoretically
p to two billion elements; however, the total size used
 elements is limited to available memory. A sample sort-
plication creates a list of random strings, enabling you

Now
unit p
four p
TextP
meth

Wind
In the
fewer
omitt
tems
were

The S
testin
SetLo
FillStr
fied s
ClearB

Low-
the n
delet
statu
tines

Figure 3: While
not supported
directly, you can
create 3D arrays
with SysTools.

Figu
and s

Figu
ated

 & Used
nuary 1997 Delphi Informant

 them (see Figure 5). DOS.
let’s discuss input and output of text files. The STText
rovides a high-level interface to ASCII (text) files. The
rocedures and functions are TextFileSize, TextFlush,
s, and TextSeek. These provide a convenient set of
ds to facilitate working with text files.

ows Operating System Interface
 operating system domain, SysTools has considerably
procedures and functions than Win/Sys. TurboPower
d some because they didn’t apply to all the operating sys-
n which SysTools can be used. However, new routines
dded to provide better access to the operating system.

TUtils unit includes routines for setting, filling, clearing,
, or exchanging values in various data types, including
gFlag (sets one or more bits in the parameter Flags) and
uct (fills a given region of memory with values of a speci-
ze, i.e. not just byte-size as in FillChar). Others include
yteFlag, LongFlagIsSet, ExchangeLongInts, and SetMediaID.

evel file handling routines are included to retrieve
mber of file handles remaining; read, write, or

 volume labels; and check valid drive or directory
. In the process of conversion, many Win/Sys rou-
were not implemented, including those relating to

trings before being sorted.
 Other functions have been superseded by the func-

Figure 6: The example program, RIEdit, allows you to view and
edit .INI files or the Windows Registry.

New & Used

Figure 7: InstallPath, UserName, CreateTime, and
ProgOptEnabled hold the application’s configuration data.

procedure CreateConfigEntry;
begin

CFG.Free;
CFG := nil;
if not DirectoryExists(ConfigTest.InstallPath) then

MkDir(ConfigTest.InstallPath);
{$IfDef Win32}

CFG := TSTRegIni.Create(RICUser, False);
CFG.CurSubKey := 'Software';
CFG.CreateKey('MyApp');

{$Else}
if FileExists('C:\Windows\MyApp.Ini') then

DeleteFile('C:\Windows\MyApp.Ini');
CFG := TSTRegIni.Create('C:\Windows\MyApp.Ini',True);

{$EndIf}
CFG.CreateKey('User Info');
CFG.CurSubKey := 'User Info';
CFG.WriteString('User', ConfigTest.UserName);
CFG.WriteDateTime('Config_Changed',

ConfigTest.CreateTime);
CFG.CreateKey('Program Options');
CFG.CurSubKey := 'Program Options';
CFG.WriteString('Prog_Directory',

ConfigTest.InstallPath);
CFG.WriteBoolean('Program Option Enabled',

ConfigTest.ProgOptEnabled);
CFG.Free;

end;
tionality of Delphi components (e.g. Number of Drives by
the TDriveCombo component). Win/Sys’ ExistFile function
now has a Delphi equivalent (FileExists in the SysUtils
unit); and various methods such as ExtractFileExt and
ExtractFileName functions have been replaced by Delphi’s
filename parsing functions.

Registry and .INI Files
The Windows Registry (.REG) and .INI files are used in
Windows 3.x, Windows 95, and Windows NT. While .INI
files were the preferred way to store information in Windows
3.x, the Registry has assumed this role in Windows 95.

Since .INI files are ASCII text files, they are easy to edit.
.REG files, which are binary, pose more problems.
However, SysTools’ TRegIni class provides all the tools nec-
essary to write to or read from .REG and .INI files. You
can use practically the same code to work with both types.
The example application for this unit, RIEdit, mimics the
Windows 95 RegEdit utility. It transparently opens and
shows either the Registry or a particular .INI file (see
Figure 6). Data types you can write to or read from a .REG
or .INI file include strings, Boolean, datetime types, inte-
gers, floating point, and so on.

A configuration example. To demonstrate the power of this
class, I’ve written a small demonstration program that sets a
few configuration options after testing for a serial number. It
consists of a project file and four unit files for each of the
four forms: CGFTest, SerialDg (a Serial Number testing dia-
log box), EntDlg (Entry Dialog Box), and ShowCFG (which
allows both viewing and editing of existing .REG or .INI
files). Admittedly, the program is much simpler than
SysTools’ example program. However, it demonstrates the
power of these tools.

Following is the method that writes to a .REG or .INI file.
CFG is the variable that refers to the file being written to.
InstallPath, UserName, CreateTime, and ProgOptEnabled hold
the application’s configuration data. Note the compiler direc-
tives that enable the appropriate changes for Delphi 1 or 2
(see Figure 7).
52 January 1997 Delphi Informant
Assembly Code in Delphi
One of the bonuses in SysTools is a large collection of
routines demonstrating the different ways to use assembly
code. Two units have the bulk of ASM code. The STBase
unit contains a number of strict assembler functions. The
other unit, STUtils, includes assembly code within
Delphi methods and functions. There is even inline code
for some of the 16-bit primitives (inline is no longer sup-
ported in Delphi 2, but was used in Delphi 1). Let’s look
at two examples.

At the start of the STUtils unit is a series of 16-bit proce-
dures and functions written in inline code for Delphi 1.
Most are low level. How low? Here is the 16-bit version of
MakeWord, a function to construct a word out of two bytes:

function MakeWord(H, L : Byte) : Word;
{ Construct a word from two bytes }
{$IFNDEF OS32}

inline(
$58/ { pop ax ;low byte into AL }
$5B/ { pop bx ;high byte into BL }
$88/$DC); { mov ah,bl ;high byte into AH }

{$ENDIF}

Now let’s take a look at the 32-bit version for Delphi 2:

function MakeWord(H, L : Byte) : Word;
begin

Result := (Word(H) shl 8) or L;
end;

Among other things, this comparison demonstrates the opti-
mization built into Delphi 2. It’s no longer necessary to write
as much assembly code to optimize. Few of the 32-bit exam-
ples contain assembly code. The Delphi 2 version of the
WriteVolumeLabel function is lean compared to Delphi 1:

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applica-
tions with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in applications, partic-
ularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.

New & Used
function WriteVolumeLabel (const VolName: string;
Drive: AnsiChar) : Cardinal;

const
RootMask = 'x:\';

var
Temp : string;
Root : string;

begin
Temp := VolName;

Root := Drive + ':\';

if Length(Temp) > 11 then
SetLength(Temp, 11);

if Windows.SetVolumeLabel(PAnsiChar(Root),

PAnsiChar(Temp)) then
Result := 0

else
Result := GetLastError;

end;

While this example contains five lines of code, the 16-bit version
contains 16 lines of Pascal code and 46 lines of assembly code
(see Listing Five on page 54). With these excellent examples of
source code, this library is a great resource and learning tool.

The TurboPower Legacy
Typical of the written documentation accompanying other
TurboPower libraries, the SysTools manual is excellent: all key
properties and methods are fully explained; carefully selected
examples of code are included in each chapter (concentrating
on the issues raised by the classes themselves); and many
insights into Windows programming in general, and 32-bit
development in particular, are provided.

As mentioned earlier, the company’s tradition of including full
source code at no additional cost continues. In addition to the
many example programs, TurboPower has included the console
programs used to test these classes. Known problems are always
articulated, and excellent support is provided via e-mail, online,
and phone. You can also download minor upgrades free of
charge. Having used TurboPower tools for the past 10 years, I
can state with conviction that SysTools for Delphi continues
the TurboPower tradition. I wish every programming tool ven-
dor could reach this level of excellence.
53 January 1997 Delphi Informant
Conclusion
SysTools for Delphi is a truly
multi-faceted library. Compared
to its predecessor, Win/Sys
Library, it’s a major step forward,
as Delphi was from Turbo Pascal.
One of the more important new
features in SysTools is its ability to
handle the three types of strings in
Delphi: length-byte, ANSI string
(introduced in Delphi 2), and
null-terminated. It has an impres-
sive set of container classes, a mar-
velous sorting engine, a suite of
low-level tools, and a BCD math
class. It also provides a class that
can directly read from and write
to any .INI file or the Windows
Registry (16- and 32-bit). Best of
all, SysTools is compatible with
both 16- and 32-bit programs
compiled in Delphi 1 and 2
respectively. No serious Delphi
programmer should be without this marvelous library. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JAN\DI9701AM.

SysTools for Delphi is a large library of
Delphi classes for manipulating strings of
all kinds, 10 container classes, and low-
level routines to interface the Windows
operating environment, including the
Registry. It includes example programs,
full source code, and additional console
test programs. The manual is well orga-
nized, informative, and very well written.
SysTools is an excellent collection of
Delphi building tools and an excellent
learning resource.

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
E-Mail: Internet: info@tpower.com
or CIS: 76004,2611
Web Site: http://www.tpower.com
Price: SysTools for Delphi, US$149;
upgrade from Win/Sys Library, US$59;
upgrade from any other TurboPower
product, US$119.

New & Used
Begin Listing Five — STUTILS.PAS 1.00
From SysTools for Delphi, Copyright (c) TurboPower Software,

Co. 1996

{ 16-bit version of function for Delphi 1 }

function WriteVolumeLabel(const VolName : string;

Drive : AnsiChar) : Cardinal;

var

XFCB : XFCBRec;

DTA : DTABuf;

SaveDTA : Pointer;

MediaID : MediaIDType;

DriveNo : Byte;

VName : array[0..10] of AnsiChar;

MediaBlockExists : Boolean;

ErrorCode : Byte;

begin

SaveDTA := GetDTA;

SetDTA(DTA);

FillChar(XFCB, SizeOf(XFCB), 0);

FillChar(XFCB.FileSpec, 11, '?');

XFCB.Flag := $FF;

XFCB.AttrByte := 8;

DriveNo := Ord(UpCase(Drive)) - (Ord('A') - 1);

XFCB.DriveCode := DriveNo;

MediaBlockExists := (GetMediaID(Drive,MediaID) = 0);

FillChar(VName, SizeOf(VName), ' ');

Move(VolName[1],VName,

MinWord(Length(VolName),SizeOf(VName)));

asm

push ds

mov ax,ss

mov ds,ax

mov es,ax

lea dx,XFCB

mov ah,11h

int 21h

or al,al

jnz @@NoLabel

lea di,DTA

mov dx,di

add di,18h

cld

mov cx,ss

mov ds,cx

lea si,VName

mov cx,11
54 January 1997 Delphi Informant
rep movsb

mov ax,ss

mov ds,ax

mov ah,17h

int 21h

mov ErrorCode,al

jmp @@ExitPoint

@@NoLabel:

lea di,XFCB

push ss

push di

add di,8

mov cx,ss

mov ds,cx

mov es,cx

lea si,VName

cld

mov cx,11

rep movsb

call DosFCBCreate

mov ErrorCode,al

cmp al,0

ja @@ExitPoint

lea di,XFCB

push ss

push di

call DosFCBClose

mov ErrorCode,al

@@ExitPoint:

pop ds

end;

if MediaBlockExists and (ErrorCode = 0) then

begin

Move(VName[0], MediaID.VolumeLabel,

SizeOf(MediaID.VolumeLabel));

ErrorCode := SetMediaID(Drive, MediaID);

end;

SetDTA(SaveDTA^);

Result := ErrorCode;

end;

End Listing Five

File | New
Directions / Commentary

Business Objects: Moving beyond Vaporware?
The term business object has a certain ethereal quality to it. Although touted for years by object-
oriented (OO) proponents, questioning its utility isn’t necessarily wrong. Most developers have

found it hard to sink their teeth into business objects and use them in real-life applications. Last year,
I talked about emerging trends in object-oriented programming. This month, we’ll take a closer look
at one of those trends — business objects — and determine to what extent you can take advantage
of them in Delphi.
What are business objects? Perhaps the
simplest way to understand what busi-
ness objects are is to contrast them with
what I call system objects. System objects
are reusable components that can be
used across a variety of business appli-
cations. The TTable component, along
with all other components in the
Delphi Visual Component Library, is a
good example of a system object. In
contrast, business objects encapsulate
business logic specific to a business
entity (such as a customer, student, or
invoice) or a process (such as a purchase
or ATM withdrawal). System objects
are horizontal, whereas business objects
are — by their nature — vertical crea-
tures, specific to a particular line of
business, e.g. a business object devel-
oped for a bank probably won’t have
tangible benefits for an HMO.

Why use business objects? When devel-
oping applications, the greatest amount of
energy is usually spent on the business-
specific parts of the application. Given
this investment, it’s clear that business
rules are the heart of most applications.
Thus, encapsulating these rules into busi-
ness objects has several advantages:

Business objects provide the ability to
build a reusable component architecture.
Reuse is touted as one of the funda-
mental motivations behind OO
methodologies. As with any Delphi
component you create, a well-built
business object can be reused in multi-
ple applications. Therefore, after a com-
pany has developed business objects, it
55 January 1997 Delphi Informant
should be able to gain a return on the
investment in future applications.

Business objects simplify the process of
making rule changes. After developing a
user interface component (such as an
edit box), how often will you need to
make changes to it? While some
changes are expected, it’s unlikely that
many properties or methods of this
visual component will need to be modi-
fied or added. Contrast this edit box
with a typical business object. As the
companies these business objects imi-
tate are constantly changing, there will
be an ongoing need to make changes to
a business object. Because of encapsula-
tion, a properly designed business
object can be modified rather quickly,
without causing a ripple effect across an
application — as long as its external
interface remains constant.

Business objects separate business rules
from the rest of the application. In
client/server systems, a fundamental
issue has always been determining
where the business rules of the applica-
tion should be stored: within the
client’s user interface, or as stored pro-
cedures on the server. From an OO
standpoint, the solution is to partition
the application, adding a business logic
layer between the presentation and
database levels. Such an application
architecture becomes more extensible
and easier to maintain.

Can you use business objects in
Delphi? Delphi features an object-ori-
ented language, so the ability to create
business object classes is not an issue.
However, objects instantiated at run
time are stored only in memory; all
information related to an object is lost
when you close an application. Thus,
in order for business objects to be use-
ful, you must be able to store them
persistently between sessions.
Unfortunately, out of the box, Delphi
has little to offer when it comes to
object storage. Because Delphi is pri-
marily targeted as a client/server devel-
opment tool, its database access is
focused exclusively on being a good
client for back-end relational database
systems. Also, Delphi data classes don’t
support persistent storage of objects,
so you really have no choice but to do
it on your own. In an upcoming
File | New, we’ll look at the four
options you have for creating a custom
business object storage solution.

Are you using business objects in
Delphi? If so, contact me at
rwagner@acadians.com and let me
know how you’re using them. I’ll com-
pile this information and share it with
all of you. ∆

— Richard Wagner

Richard Wagner is the Chief Technology
Officer of Acadia Software in the Boston,
MA area. He welcomes your comments
at rwagner@acadians.com or
on the File | New home page at
http://www.acadians.com/filenew.htm.

	Table of Contents
	Symposium
	Delphi Tools
	Eagle Research Announces Version 2.0 of VB2D Translator
	ExceleTel Releases TeleTools-Delphi 1.04
	Tamarack Associates Releases Rubicon for Delphi
	IntegrationWare Ships Speed Daemon for Delphi v1.1
	SkyLine Debuts ImageLib Corporate Suite Document Imaging Package
	Hurricane Software Announces Multi-File Search Utility

	Newsline
	Borland Cuts Staff; Expects Second Quarter Loss
	ICG Relocates, Discontinues CompuServe Forum
	Borland Announces Interim President and CEO
	Borland Ships Java-Enabled InterBase SQL Database Server
	ICG Announces Delphi Informant and Oracle Informant on CD-ROM
	Errors & Omissions

	A New Spin on Delphi
	Let the Games Begin
	Creating Properties
	Basic 3D Procedures
	Some 3D Theory
	Our First Application
	Conclusion
	Listing One — The GMP Unit
	Listing Two — The Article1 Unit

	References:

	Virtual Methods, Inside Out
	Review: Syntax of Virtual Methods
	Polymorphism in Action
	The Virtual Method Table
	Conclusion

	INI, the Registry, or Both?
	Using INI Files
	Using the Registry
	Using the TRegIniFile Class
	Using the TRegistry Class
	Conclusion
	Listing Three — Example MRU Implementation
	Listing Four — Demonstrating the TRegistry Class

	Stream of Consciousness
	Cm_AppKeyDown Message
	Cm_AppSysCommand Message
	Cm_ButtonPressed Message
	Cm_ColorChanged Message
	Cm_ControlListChange Message
	Cm_Ctl3DChanged Message
	Cm_CursorChanged Message
	Cm_DesignHitTest Message
	Cm_DialogHandle Message
	Cm_Drag Message
	Cm_EnabledChanged Message
	Cm_FocusChanged Message
	Cm_FontChange Message
	Cm_FontChanged Message
	Cm_GetDataLink Message
	Cm_HintShow Message
	Cm_InvokeHelp Message
	Cm_IsToolControl Message
	Cm_MouseEnter Message
	Cm_MouseLeave Message
	Cm_ParentColorChanged Message
	Cm_ParentCtl3DChanged Message
	Cm_ParentFontChanged Message
	Cm_ParentShowHintChanged Message
	Cm_Release Message
	Cm_ShowHintChanged Message
	Cm_SysColorChange Message
	Cm_TextChanged Message
	Cm_TimeChange Message
	Cm_WinIniChange Message
	Conclusion

	What’s in a Name?
	A System That Works
	Explaining Some of the Suggestions
	Some Examples
	Conclusion

	TBarCode
	The Specification
	The Component
	Descend
	Create
	Auto Update
	Validating Input
	Painting Concerns
	BarcodePaint
	PaintABar
	Other Goodies
	Conclusion

	TWorldMap
	The Development Process
	Sidebar - Application Profile

	The Beta Cycle
	Capabilities
	Customers
	Sidebar - Earth Observation Aid

	Looking Ahead

	InfoPower 2.0
	Picture Masks
	Filter Dialog
	Wait — There’s More
	An Even More Powerful Grid
	Lookup Combo Power for Client/Server Developers
	No More Codes
	AN INFOPOWER PRIMER

	Other Enhancements
	Conclusion

	SysTools for Delphi
	A Comparison of Win/Sys and SysTools
	String Methods
	Date/Time Routines
	BCD Math
	Container Classes
	Bit Sets, Lists, and Queues
	Arrays of Global Proportions: Sorted and Unsorted Collections
	A Dictionary and a Tree
	The Sorting Engine and ASCII Text File Handling
	Windows Operating System Interface
	Registry and .INI Files
	Assembly Code in Delphi
	The TurboPower Legacy
	Conclusion
	Listing Five — STUTILS.PAS 1.00

	Business Objects: Moving beyond Vaporware?

